Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
import tensorflow.keras as keras
|
4 |
+
import gradio as gr
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from huggingface_hub import from_pretrained_keras
|
7 |
+
|
8 |
+
|
9 |
+
# download the already pushed model
|
10 |
+
trained_models = [from_pretrained_keras("buio/attention_mil_classification")]
|
11 |
+
|
12 |
+
|
13 |
+
POSITIVE_CLASS = 1
|
14 |
+
BAG_COUNT = 1000
|
15 |
+
VAL_BAG_COUNT = 300
|
16 |
+
BAG_SIZE = 3
|
17 |
+
PLOT_SIZE = 1
|
18 |
+
ENSEMBLE_AVG_COUNT = 1
|
19 |
+
|
20 |
+
def create_bags(input_data, input_labels, positive_class, bag_count, instance_count):
|
21 |
+
|
22 |
+
# Set up bags.
|
23 |
+
bags = []
|
24 |
+
bag_labels = []
|
25 |
+
|
26 |
+
# Normalize input data.
|
27 |
+
input_data = np.divide(input_data, 255.0)
|
28 |
+
|
29 |
+
# Count positive samples.
|
30 |
+
count = 0
|
31 |
+
|
32 |
+
for _ in range(bag_count):
|
33 |
+
|
34 |
+
# Pick a fixed size random subset of samples.
|
35 |
+
index = np.random.choice(input_data.shape[0], instance_count, replace=False)
|
36 |
+
instances_data = input_data[index]
|
37 |
+
instances_labels = input_labels[index]
|
38 |
+
|
39 |
+
# By default, all bags are labeled as 0.
|
40 |
+
bag_label = 0
|
41 |
+
|
42 |
+
# Check if there is at least a positive class in the bag.
|
43 |
+
if positive_class in instances_labels:
|
44 |
+
|
45 |
+
# Positive bag will be labeled as 1.
|
46 |
+
bag_label = 1
|
47 |
+
count += 1
|
48 |
+
|
49 |
+
bags.append(instances_data)
|
50 |
+
bag_labels.append(np.array([bag_label]))
|
51 |
+
|
52 |
+
print(f"Positive bags: {count}")
|
53 |
+
print(f"Negative bags: {bag_count - count}")
|
54 |
+
|
55 |
+
return (list(np.swapaxes(bags, 0, 1)), np.array(bag_labels))
|
56 |
+
|
57 |
+
# Load the MNIST dataset.
|
58 |
+
(x_train, y_train), (x_val, y_val) = keras.datasets.mnist.load_data()
|
59 |
+
|
60 |
+
# Create validation data.
|
61 |
+
val_data, val_labels = create_bags(
|
62 |
+
x_val, y_val, POSITIVE_CLASS, VAL_BAG_COUNT, BAG_SIZE
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
def predict(data, labels, trained_models):
|
67 |
+
|
68 |
+
# Collect info per model.
|
69 |
+
models_predictions = []
|
70 |
+
models_attention_weights = []
|
71 |
+
models_losses = []
|
72 |
+
models_accuracies = []
|
73 |
+
|
74 |
+
for model in trained_models:
|
75 |
+
|
76 |
+
# Predict output classes on data.
|
77 |
+
predictions = model.predict(data)
|
78 |
+
models_predictions.append(predictions)
|
79 |
+
|
80 |
+
# Create intermediate model to get MIL attention layer weights.
|
81 |
+
intermediate_model = keras.Model(model.input, model.get_layer("alpha").output)
|
82 |
+
|
83 |
+
# Predict MIL attention layer weights.
|
84 |
+
intermediate_predictions = intermediate_model.predict(data)
|
85 |
+
|
86 |
+
attention_weights = np.squeeze(np.swapaxes(intermediate_predictions, 1, 0))
|
87 |
+
models_attention_weights.append(attention_weights)
|
88 |
+
|
89 |
+
model.compile(loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
90 |
+
loss, accuracy = model.evaluate(data, labels, verbose=0)
|
91 |
+
models_losses.append(loss)
|
92 |
+
models_accuracies.append(accuracy)
|
93 |
+
|
94 |
+
print(
|
95 |
+
f"The average loss and accuracy are {np.sum(models_losses, axis=0) / ENSEMBLE_AVG_COUNT:.2f}"
|
96 |
+
f" and {100 * np.sum(models_accuracies, axis=0) / ENSEMBLE_AVG_COUNT:.2f} % resp."
|
97 |
+
)
|
98 |
+
|
99 |
+
return (
|
100 |
+
np.sum(models_predictions, axis=0) / ENSEMBLE_AVG_COUNT,
|
101 |
+
np.sum(models_attention_weights, axis=0) / ENSEMBLE_AVG_COUNT,
|
102 |
+
)
|
103 |
+
|
104 |
+
def plot(data, labels, bag_class, predictions=None, attention_weights=None):
|
105 |
+
|
106 |
+
""""Utility for plotting bags and attention weights.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
data: Input data that contains the bags of instances.
|
110 |
+
labels: The associated bag labels of the input data.
|
111 |
+
bag_class: String name of the desired bag class.
|
112 |
+
The options are: "positive" or "negative".
|
113 |
+
predictions: Class labels model predictions.
|
114 |
+
If you don't specify anything, ground truth labels will be used.
|
115 |
+
attention_weights: Attention weights for each instance within the input data.
|
116 |
+
If you don't specify anything, the values won't be displayed.
|
117 |
+
"""
|
118 |
+
|
119 |
+
labels = np.array(labels).reshape(-1)
|
120 |
+
|
121 |
+
if bag_class == "positive":
|
122 |
+
if predictions is not None:
|
123 |
+
labels = np.where(predictions.argmax(1) == 1)[0]
|
124 |
+
else:
|
125 |
+
labels = np.where(labels == 1)[0]
|
126 |
+
|
127 |
+
random_labels = np.random.choice(labels, PLOT_SIZE)
|
128 |
+
bags = np.array(data)[:, random_labels]
|
129 |
+
|
130 |
+
elif bag_class == "negative":
|
131 |
+
if predictions is not None:
|
132 |
+
labels = np.where(predictions.argmax(1) == 0)[0]
|
133 |
+
else:
|
134 |
+
labels = np.where(labels == 0)[0]
|
135 |
+
|
136 |
+
random_labels = np.random.choice(labels, PLOT_SIZE)
|
137 |
+
bags = np.array(data)[:, random_labels]
|
138 |
+
|
139 |
+
else:
|
140 |
+
print(f"There is no class {bag_class}")
|
141 |
+
return
|
142 |
+
|
143 |
+
print(f"The bag class label is {bag_class}")
|
144 |
+
for i in range(PLOT_SIZE):
|
145 |
+
figure = plt.figure(figsize=(8, 8)) #each image
|
146 |
+
print(f"Bag number: {labels[i]}")
|
147 |
+
for j in range(BAG_SIZE):
|
148 |
+
image = bags[j][i]
|
149 |
+
figure.add_subplot(1, BAG_SIZE, j + 1)
|
150 |
+
plt.grid(False)
|
151 |
+
plt.axis('off')
|
152 |
+
if attention_weights is not None:
|
153 |
+
plt.title(np.around(attention_weights[random_labels[i]][j], 2))
|
154 |
+
plt.imshow(image)
|
155 |
+
plt.show()
|
156 |
+
return figure
|
157 |
+
|
158 |
+
|
159 |
+
# Evaluate and predict classes and attention scores on validation data.
|
160 |
+
def predict_and_plot(class_):
|
161 |
+
print('WTF')
|
162 |
+
class_predictions, attention_params = predict(val_data, val_labels, trained_models)
|
163 |
+
PLOT_SIZE = 1
|
164 |
+
return plot(val_data, val_labels, class_,
|
165 |
+
predictions=class_predictions,
|
166 |
+
attention_weights=attention_params)
|
167 |
+
|
168 |
+
predict_and_plot('positive')
|
169 |
+
|
170 |
+
inputs = gr.Radio(choices=['positive','negative'])
|
171 |
+
|
172 |
+
outputs = gr.Plot(label='predicted bag')
|
173 |
+
|
174 |
+
#title = "Heart Disease Classification 🩺❤️"
|
175 |
+
#description = "Binary classification of structured data including numerical and categorical features."
|
176 |
+
#article = "Author: <a href=\"https://huggingface.co/buio\">Marco Buiani</a>. Based on the <a href=\"https://keras.io/examples/structured_data/structured_data_classification_from_scratch/\">keras example</a> by <a href=\"https://twitter.com/fchollet\">François Chollet</a> Model Link: https://huggingface.co/buio/structured-data-classification"
|
177 |
+
|
178 |
+
demo = gr.Interface(fn=predict_and_plot, inputs=inputs, outputs=outputs, title=title, allow_flagging='never')
|
179 |
+
|
180 |
+
demo.launch(debug=True)
|