LPX55 commited on
Commit
f00c873
·
1 Parent(s): fccbc0f

feat: implement model registration logic for ONNX, HuggingFace, and Gradio API

Browse files
Files changed (2) hide show
  1. app.py +4 -0
  2. utils/model_loader.py +151 -0
app.py CHANGED
@@ -17,6 +17,7 @@ import torch
17
 
18
  from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
19
  from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output
 
20
  from utils.onnx_model_loader import load_onnx_model_and_preprocessor, get_onnx_model_from_cache
21
  from forensics.gradient import gradient_processing
22
  from forensics.minmax import minmax_process
@@ -79,6 +80,9 @@ CLASS_NAMES = {
79
  "model_8": ['Fake', 'Real'],
80
  }
81
 
 
 
 
82
 
83
 
84
  def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None):
 
17
 
18
  from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
19
  from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output
20
+ from utils.model_loader import register_all_models
21
  from utils.onnx_model_loader import load_onnx_model_and_preprocessor, get_onnx_model_from_cache
22
  from forensics.gradient import gradient_processing
23
  from forensics.minmax import minmax_process
 
80
  "model_8": ['Fake', 'Real'],
81
  }
82
 
83
+ # Register all models (ONNX, HuggingFace, Gradio API)
84
+ register_all_models(MODEL_PATHS, CLASS_NAMES, device, infer_onnx_model, preprocess_onnx_input, postprocess_onnx_output)
85
+
86
 
87
 
88
  def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None):
utils/model_loader.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Model loading and registration logic for OpenSight Deepfake Detection Playground.
3
+ Handles ONNX, HuggingFace, and Gradio API model registration and metadata.
4
+ """
5
+ from utils.registry import register_model, MODEL_REGISTRY, ModelEntry
6
+ from utils.onnx_model_loader import load_onnx_model_and_preprocessor, get_onnx_model_from_cache
7
+ from utils.utils import preprocess_resize_256, postprocess_logits, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
8
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification
9
+ import torch
10
+ import numpy as np
11
+ from PIL import Image
12
+
13
+ # Cache for ONNX sessions and preprocessors
14
+ _onnx_model_cache = {}
15
+
16
+ def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None):
17
+ entry = ModelEntry(model, preprocess, postprocess, class_names, display_name=display_name, contributor=contributor, model_path=model_path, architecture=architecture, dataset=dataset)
18
+ MODEL_REGISTRY[model_id] = entry
19
+
20
+ class ONNXModelWrapper:
21
+ def __init__(self, hf_model_id):
22
+ self.hf_model_id = hf_model_id
23
+ self._session = None
24
+ self._preprocessor_config = None
25
+ self._model_config = None
26
+
27
+ def load(self):
28
+ if self._session is None:
29
+ self._session, self._preprocessor_config, self._model_config = get_onnx_model_from_cache(
30
+ self.hf_model_id, _onnx_model_cache, load_onnx_model_and_preprocessor
31
+ )
32
+
33
+ def __call__(self, image_np):
34
+ self.load()
35
+ return infer_onnx_model(self.hf_model_id, image_np, self._model_config)
36
+
37
+ def preprocess(self, image: Image.Image):
38
+ self.load()
39
+ return preprocess_onnx_input(image, self._preprocessor_config)
40
+
41
+ def postprocess(self, onnx_output: dict, class_names_from_registry: list):
42
+ self.load()
43
+ return postprocess_onnx_output(onnx_output, self._model_config)
44
+
45
+ # The main registration function
46
+
47
+ def register_all_models(MODEL_PATHS, CLASS_NAMES, device, infer_onnx_model, preprocess_onnx_input, postprocess_onnx_output):
48
+ for model_key, hf_model_path in MODEL_PATHS.items():
49
+ model_num = model_key.replace("model_", "").upper()
50
+ contributor = "Unknown"
51
+ architecture = "Unknown"
52
+ dataset = "TBA"
53
+ current_class_names = CLASS_NAMES.get(model_key, [])
54
+ if "ONNX" in hf_model_path:
55
+ onnx_wrapper_instance = ONNXModelWrapper(hf_model_path)
56
+ if model_key == "model_1":
57
+ contributor = "haywoodsloan"
58
+ architecture = "SwinV2"
59
+ dataset = "DeepFakeDetection"
60
+ elif model_key == "model_2":
61
+ contributor = "Heem2"
62
+ architecture = "ViT"
63
+ dataset = "DeepFakeDetection"
64
+ elif model_key == "model_3":
65
+ contributor = "Organika"
66
+ architecture = "VIT"
67
+ dataset = "SDXL"
68
+ elif model_key == "model_5":
69
+ contributor = "prithivMLmods"
70
+ architecture = "VIT"
71
+ elif model_key == "model_6":
72
+ contributor = "ideepankarsharma2003"
73
+ architecture = "SWINv1"
74
+ dataset = "SDXL, Midjourney"
75
+ elif model_key == "model_7":
76
+ contributor = "date3k2"
77
+ architecture = "VIT"
78
+ display_name_parts = [model_num]
79
+ if architecture and architecture not in ["Unknown"]:
80
+ display_name_parts.append(architecture)
81
+ if dataset and dataset not in ["TBA"]:
82
+ display_name_parts.append(dataset)
83
+ display_name = "-".join(display_name_parts) + "_ONNX"
84
+ register_model_with_metadata(
85
+ model_id=model_key,
86
+ model=onnx_wrapper_instance,
87
+ preprocess=onnx_wrapper_instance.preprocess,
88
+ postprocess=onnx_wrapper_instance.postprocess,
89
+ class_names=current_class_names,
90
+ display_name=display_name,
91
+ contributor=contributor,
92
+ model_path=hf_model_path,
93
+ architecture=architecture,
94
+ dataset=dataset
95
+ )
96
+ elif model_key == "model_8":
97
+ contributor = "aiwithoutborders-xyz"
98
+ architecture = "ViT"
99
+ dataset = "DeepfakeDetection"
100
+ display_name_parts = [model_num]
101
+ if architecture and architecture not in ["Unknown"]:
102
+ display_name_parts.append(architecture)
103
+ if dataset and dataset not in ["TBA"]:
104
+ display_name_parts.append(dataset)
105
+ display_name = "-".join(display_name_parts)
106
+ register_model_with_metadata(
107
+ model_id=model_key,
108
+ model=infer_gradio_api,
109
+ preprocess=preprocess_gradio_api,
110
+ postprocess=postprocess_gradio_api,
111
+ class_names=current_class_names,
112
+ display_name=display_name,
113
+ contributor=contributor,
114
+ model_path=hf_model_path,
115
+ architecture=architecture,
116
+ dataset=dataset
117
+ )
118
+ elif model_key == "model_4":
119
+ contributor = "cmckinle"
120
+ architecture = "VIT"
121
+ dataset = "SDXL, FLUX"
122
+ display_name_parts = [model_num]
123
+ if architecture and architecture not in ["Unknown"]:
124
+ display_name_parts.append(architecture)
125
+ if dataset and dataset not in ["TBA"]:
126
+ display_name_parts.append(dataset)
127
+ display_name = "-".join(display_name_parts)
128
+ current_processor = AutoFeatureExtractor.from_pretrained(hf_model_path, device=device)
129
+ model_instance = AutoModelForImageClassification.from_pretrained(hf_model_path).to(device)
130
+ preprocess_func = preprocess_resize_256
131
+ postprocess_func = postprocess_logits
132
+ def custom_infer(image, processor_local=current_processor, model_local=model_instance):
133
+ inputs = processor_local(image, return_tensors="pt").to(device)
134
+ with torch.no_grad():
135
+ outputs = model_local(**inputs)
136
+ return outputs
137
+ model_instance = custom_infer
138
+ register_model_with_metadata(
139
+ model_id=model_key,
140
+ model=model_instance,
141
+ preprocess=preprocess_func,
142
+ postprocess=postprocess_func,
143
+ class_names=current_class_names,
144
+ display_name=display_name,
145
+ contributor=contributor,
146
+ model_path=hf_model_path,
147
+ architecture=architecture,
148
+ dataset=dataset
149
+ )
150
+ else:
151
+ pass # Fallback for any unhandled models