Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from typing import List
|
|
| 8 |
import zipfile
|
| 9 |
import os
|
| 10 |
import io
|
|
|
|
| 11 |
|
| 12 |
def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
|
| 13 |
model = SentenceTransformer(model_name)
|
|
@@ -96,29 +97,25 @@ def get_sim_list(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results):
|
|
| 96 |
return result
|
| 97 |
|
| 98 |
# Define the Gradio app
|
| 99 |
-
with gr.Blocks(
|
| 100 |
# Tab for similarity calculation
|
| 101 |
with gr.Tab("Code Pair Similarity"):
|
| 102 |
# Input components
|
| 103 |
code1 = gr.Textbox(label="Code 1")
|
| 104 |
code2 = gr.Textbox(label="Code 2")
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
# Accordion for weights and models
|
| 107 |
with gr.Accordion("Weights and Models", open=False):
|
| 108 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
| 109 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
| 110 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
| 111 |
-
|
| 112 |
-
[("codebert", "microsoft/codebert-base"),
|
| 113 |
-
("graphcodebert", "microsoft/graphcodebert-base"),
|
| 114 |
-
("UnixCoder", "microsoft/unixcoder-base-unimodal"),
|
| 115 |
-
("CodeBERTa", "huggingface/CodeBERTa-small-v1"),
|
| 116 |
-
("CodeT5 small", "Salesforce/codet5-small"),
|
| 117 |
-
("PLBART", "uclanlp/plbart-java-cs"),],
|
| 118 |
-
label="Select Model",
|
| 119 |
-
value= "uclanlp/plbart-java-cs"
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
# Output component
|
| 123 |
output = gr.Textbox(label="Similarity Score")
|
| 124 |
|
|
@@ -142,20 +139,17 @@ with gr.Blocks(theme=gr.themes.Glass()) as demo:
|
|
| 142 |
# File uploader component
|
| 143 |
file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
with gr.Accordion("Weights and Models", open=False):
|
| 146 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
| 147 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
| 148 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
| 149 |
-
|
| 150 |
-
[("codebert", "microsoft/codebert-base"),
|
| 151 |
-
("graphcodebert", "microsoft/graphcodebert-base"),
|
| 152 |
-
("UnixCoder", "microsoft/unixcoder-base-unimodal"),
|
| 153 |
-
("CodeBERTa", "huggingface/CodeBERTa-small-v1"),
|
| 154 |
-
("CodeT5 small", "Salesforce/codet5-small"),
|
| 155 |
-
("PLBART", "uclanlp/plbart-java-cs"),],
|
| 156 |
-
label="Select Model",
|
| 157 |
-
value= "uclanlp/plbart-java-cs"
|
| 158 |
-
)
|
| 159 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
| 160 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|
| 161 |
|
|
|
|
| 8 |
import zipfile
|
| 9 |
import os
|
| 10 |
import io
|
| 11 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 12 |
|
| 13 |
def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
|
| 14 |
model = SentenceTransformer(model_name)
|
|
|
|
| 97 |
return result
|
| 98 |
|
| 99 |
# Define the Gradio app
|
| 100 |
+
with gr.Blocks() as demo:
|
| 101 |
# Tab for similarity calculation
|
| 102 |
with gr.Tab("Code Pair Similarity"):
|
| 103 |
# Input components
|
| 104 |
code1 = gr.Textbox(label="Code 1")
|
| 105 |
code2 = gr.Textbox(label="Code 2")
|
| 106 |
|
| 107 |
+
model_dropdown = HuggingfaceHubSearch(
|
| 108 |
+
label="Pre-Trained Model to use for Embeddings",
|
| 109 |
+
placeholder="Search for Pre-Trained models on Hugging Face",
|
| 110 |
+
search_type="model",
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
# Accordion for weights and models
|
| 114 |
with gr.Accordion("Weights and Models", open=False):
|
| 115 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
| 116 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
| 117 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
| 118 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
# Output component
|
| 120 |
output = gr.Textbox(label="Similarity Score")
|
| 121 |
|
|
|
|
| 139 |
# File uploader component
|
| 140 |
file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
|
| 141 |
|
| 142 |
+
model_dropdown = HuggingfaceHubSearch(
|
| 143 |
+
label="Pre-Trained Model to use for Embeddings",
|
| 144 |
+
placeholder="Search for Pre-Trained models on Hugging Face",
|
| 145 |
+
search_type="model",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
with gr.Accordion("Weights and Models", open=False):
|
| 149 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
| 150 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
| 151 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
| 152 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
| 154 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|
| 155 |
|