Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 1,746 Bytes
			
			| db6a3b7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | from typing import *
import torch
import torch.nn as nn
from .. import models
class Pipeline:
    """
    A base class for pipelines.
    """
    def __init__(
        self,
        models: dict[str, nn.Module] = None,
    ):
        if models is None:
            return
        self.models = models
        for model in self.models.values():
            model.eval()
    @staticmethod
    def from_pretrained(path: str) -> "Pipeline":
        """
        Load a pretrained model.
        """
        import os
        import json
        is_local = os.path.exists(f"{path}/pipeline.json")
        if is_local:
            config_file = f"{path}/pipeline.json"
        else:
            from huggingface_hub import hf_hub_download
            config_file = hf_hub_download(path, "pipeline.json")
        with open(config_file, 'r') as f:
            args = json.load(f)['args']
        _models = {
            k: models.from_pretrained(f"{path}/{v}")
            for k, v in args['models'].items()
        }
        new_pipeline = Pipeline(_models)
        new_pipeline._pretrained_args = args
        return new_pipeline
    @property
    def device(self) -> torch.device:
        for model in self.models.values():
            if hasattr(model, 'device'):
                return model.device
        for model in self.models.values():
            if hasattr(model, 'parameters'):
                return next(model.parameters()).device
        raise RuntimeError("No device found.")
    def to(self, device: torch.device) -> None:
        for model in self.models.values():
            model.to(device)
    def cuda(self) -> None:
        self.to(torch.device("cuda"))
    def cpu(self) -> None:
        self.to(torch.device("cpu"))
 | 
