File size: 11,466 Bytes
bbd635e
0579f22
 
1321bec
0579f22
 
351fa18
0579f22
 
 
 
 
 
 
 
 
a64e4fa
0579f22
 
 
 
 
 
 
 
 
 
 
 
322f7aa
 
 
 
 
 
 
 
 
 
 
 
 
fe5d244
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1e174
 
 
 
d31dc0c
78e91a7
0579f22
9a5ab76
322f7aa
0579f22
 
322f7aa
 
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1e174
 
0579f22
 
 
 
 
0ec68ea
10d544d
 
 
cf1e174
0579f22
 
 
 
 
77b9727
9a5ab76
502e1e3
 
9a5ab76
de5b559
77b9727
 
 
0579f22
 
 
 
 
 
65f2bbe
0579f22
 
 
 
 
 
65f2bbe
0579f22
 
 
3ee2961
a191da0
 
8413bbf
 
 
 
 
e0dc876
8413bbf
 
0579f22
e4b3a63
e0dc876
 
 
 
3827748
0579f22
 
 
 
 
8fad386
 
0579f22
 
 
5d1a17f
0579f22
 
605474f
5ceef2a
0579f22
 
a20ffdb
77a99bc
185bc9f
0579f22
a790b06
 
 
0579f22
 
 
41191f9
0579f22
 
 
 
 
 
73b6463
 
15f13d4
17cb77c
615aa5a
4d9158b
0579f22
 
2fc1883
e63ac56
f8e2260
4d9158b
0579f22
 
 
 
 
2fc1883
0579f22
 
 
 
 
 
 
77b9727
dced40c
 
de5b559
0579f22
 
65f2bbe
 
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44ed963
0579f22
44ed963
39cf3e0
 
0579f22
 
 
44ed963
0579f22
 
 
 
 
 
99834a8
 
44ed963
0579f22
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from huggingface_hub import InferenceClient, HfApi
#from html2image import Html2Image
import gradio as gr
#import markdown
import requests
import random
import prompts
#import im_prompts
import uuid
import json
#import PIL
#import bs4
import re
import os
loc_folder="chat_history"
loc_file="chat_json"

clients = [
    {'type':'image','name':'black-forest-labs/FLUX.1-dev','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'deepseek-ai/DeepSeek-V2.5-1210','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Qwen/Qwen2.5-Coder-32B-Instruct','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'meta-llama/Meta-Llama-3-8B','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Snowflake/snowflake-arctic-embed-l-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Snowflake/snowflake-arctic-embed-m-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'HuggingFaceTB/SmolLM2-1.7B-Instruct','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Qwen/QwQ-32B-Preview','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'meta-llama/Llama-3.3-70B-Instruct','rank':'pro','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'mistralai/Mixtral-8x7B-Instruct-v0.1','rank':'op','max_tokens':40000,'schema':{'bos':'<s>','eos':'</s>'}},
]

def format_prompt(message, mod, system):
    eos=f"{clients[int(mod)]['schema']['eos']}\n"
    bos=f"{clients[int(mod)]['schema']['bos']}\n"
    prompt=""
    prompt+=bos
    prompt+=system
    prompt+=eos
    prompt+=bos
    prompt += f"[INST] {message} [/INST]"
    prompt+=eos
    prompt+=bos
    return prompt
def generate(prompt,history,mod=2,tok=4000,seed=1,role="ASSISTANT",data=None):
    #print("#####",history,"######")
    gen_images=False
    client=InferenceClient(clients[int(mod)]['name'])
    client_tok=clients[int(mod)]['max_tokens']
    good_seed=[947385642222,7482965345792,8584806344673]
    if not history:
        history=[{'role':'user','content':prompt}]
    if not os.path.isdir(loc_folder):os.mkdir(loc_folder)

    if os.path.isfile(f'{loc_folder}/{loc_file}.json'):
        with open(f'{loc_folder}/{loc_file}.json','r') as word_dict:
            lod=json.loads(word_dict.read())
        word_dict.close()    
    else:
        lod=[]
    if role == "MANAGER":
        system_prompt = prompts.MANAGER.replace("**TIMELINE**",data[4]).replace("**HISTORY**",str(history))
        formatted_prompt = format_prompt(prompt, mod, system_prompt)
    elif role == "PATHMAKER":
        system_prompt = prompts.PATH_MAKER.replace("**CURRENT_OR_NONE**",str(data[4])).replace("**PROMPT**",json.dumps(data[0],indent=4)).replace("**HISTORY**",str(history))
        formatted_prompt = format_prompt(prompt, mod, system_prompt)
    elif role == "CREATE_FILE":
        system_prompt = prompts.CREATE_FILE.replace("**TIMELINE**",data[4]).replace("**FILENAME**",str(data[1]))
        formatted_prompt = format_prompt(prompt, mod, system_prompt)
    elif role == "SEARCH":
        system_prompt = prompts.SEARCH.replace("**DATA**",data)
        formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
    else: system_prompt = "";formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
    
    if tok==None:tok=client_tok-len(formatted_prompt)+10
    print("tok",tok)
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=tok, #total tokens - input tokens
        top_p=0.99,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    output = ""
    if role=="MANAGER":
        print("Running Manager")
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        for response in stream:
            output += response.token.text
        yield output
        yield history
        yield prompt

    elif role=="PATHMAKER":
        print("Runnning ", role)
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        #prompt=f"We just completed role:{role}, now choose the next tool to complete the task:{prompt}, or COMPLETE"
        for response in stream:
            output += response.token.text
        print(output)
        yield output
        yield history
        yield prompt
        
    elif role=="CREATE_FILE":
        print("Running Create File")
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        for response in stream:
            output += response.token.text
        #print(file_content)
        print(output)
        yield 'test1'
        yield data[1]
        yield output
        
        #yield output
        #yield history
        #yield prompt
    #with open(f'{loc_folder}/{loc_file}.json','w') as jobj:
    #    lod.append({'prompt':prompt,'response':output,'image':im_box,'model':clients[1]['name'],'seed':seed}),
    #    jobj.write(json.dumps(lod,indent=4))
    #jobj.close()    
    #chat_im_out=chat_img(output)

'''def gen_im(prompt,seed):
    print('generating image')
    image_out = im_client.text_to_image(prompt=prompt['text'],height=128,width=128,num_inference_steps=10,seed=seed)
    #print(type(image_out))
    output=f'images/{uuid.uuid4()}.png'
    image_out.save(output)
    print('Done: ',output)
    return [{'role':'assistant','content': {'path':output}}]'''

def build_space(repo_name,file_name,file_content,access_token=""):
    try:
        repo_path="broadfield/"+repo_name
        if not access_token:access_token=os.environ['HF_TOKEN']

        api=HfApi(endpoint="https://huggingface.co", token=access_token)
        repo_url = api.create_repo(
                repo_id=repo_path,
                repo_type="space",
                space_sdk="gradio",
                exist_ok=True,
                private=False,
            )
        # Create a new Space
        #response = api.create_repo(repo_path)
        #space_info = repo_url.json()
        #print(space_info)
        #space_id = space_info["name"]
        #print(f"Created Space with ID: {space_id}")
        local_file_path=str(uuid.uuid4())
        with open(local_file_path, 'w') as f:
            f.write(str(file_content))
        f.close()
        # Upload a local file to the Space
        commit_message = "Adding file test: "+str(uuid.uuid4())
        
        api.upload_file(path_or_fileobj=local_file_path, path_in_repo=file_name, repo_id=repo_path, repo_type='space', commit_message=commit_message)
        print("File uploaded successfully.")
        # Commit changes
        commit_message += "\nInitial commit to the repository."+ local_file_path
        api.commit_repo(space_id, message=commit_message)
        return [{'role':'assistant','content': commit_message+'\nCommit Success' }]
    except Exception as e:
        print("ERROR ",e)
        return [{'role':'assistant','content': 'There was an Error: ' + str(e)}]

        
def agent(prompt_in,history,mod=2):
    print(prompt_in)
    print('mod ',mod)
    in_data=[None,None,None,None,None,]
    #in_data[0]=prompt_in['text']
    in_data[0]=prompt_in
    prompt=prompt_in
    fn=""
    com=""
    go=True
    MAX_DATA=int(clients[int(mod)]['max_tokens'])*2
    while go == True:
        seed = random.randint(1,9999999999999)
        c=0
        history = [history[-4:]]
        if len(str(history)) > MAX_DATA*4:
            history = [history[-2:]]
        role="PATHMAKER"
        outph= list(generate(prompt,history,mod,2400,seed,role,in_data))[0]
        in_data[4]=outph
        print(outph)
        history=history+[{'role':'assistant','content':str(outph)}]
        yield [{'role':'assistant','content':str(outph)}]
        role="MANAGER"
        outp=generate(prompt,history,mod,128,seed,role,in_data)
        outp0=list(outp)[0].split('<|im_end|>')[0]
        #outp0 = re.sub('[^a-zA-Z0-9\s.,?!%()]', '', outpp)
        history=history+[{'role':'assistant','content':str(outp0)}]
        yield [{'role':'assistant','content':str(outp0)}]
        for line in outp0.split("\n"):
            if "action:" in line:
                try:
                    com_line = line.split('action:')[1]
                    fn = com_line.split('action_input=')[0]
                    com = com_line.split('action_input=')[1].split('<|im_end|>')[0]
                    #com = com_line.split('action_input=')[1].replace('<|im_end|>','').replace("}","").replace("]","").replace("'","")
                    print(com)
                except Exception as e:
                    pass
                    fn="NONE"
                if 'CREATE_FILE' in fn:
                    print('CREATE_FILE called')
                    in_data[1]=com
                    out_o =generate(prompt,history,mod=mod,tok=10000,seed=seed,role="CREATE_FILE",data=in_data)
                    out_w=list(out_o)
                    build_space(out_w[0],out_w[1],out_w[2])
                elif 'IMAGE' in fn:
                    print('IMAGE called')
                    #out_im=gen_im(prompt,seed)
                    #yield [{'role':'assistant','content': out_im}]
                elif 'SEARCH' in fn:
                    print('SEARCH called')
                elif 'COMPLETE' in fn:
                    print('COMPLETE')
                    go=False
                    break
                elif 'NONE' in fn:
                    print('ERROR ACTION NOT FOUND')
                    history+=[{'role':'system','content':f'observation:The last thing we attempted resulted in an error, check formatting on the tool call'}]

                else:pass;seed = random.randint(1,9999999999999)
with gr.Blocks() as ux:
    with gr.Row():
        with gr.Column():
            gr.HTML("""<center><div style='font-size:xx-large;font-weight:900;'>Chatbo</div>""")
            chatbot=gr.Chatbot(type='messages',show_label=False, show_share_button=False, show_copy_button=True, layout="panel")
            prompt=gr.MultimodalTextbox(label="Prompt",file_count="multiple", file_types=["image"])
            mod_c=gr.Dropdown(choices=[n['name'] for n in clients],value='Qwen/Qwen2.5-Coder-32B-Instruct',type='index')
            #chat_ux=gr.ChatInterface(fn=agent,chatbot=chatbot,additional_inputs=[mod_c]).load()
            #chat_ux.additional_inputs=[mod_c]
            #chat_ux.load()
            with gr.Row():
                submit_b = gr.Button()
                stop_b = gr.Button("Stop")
                clear = gr.ClearButton([chatbot,prompt])
            with gr.Row(visible=False):
                stt=gr.Textbox()
        with gr.Column():
            file_name=gr.Textbox(label="File Name")
            file_btn=gr.Button("Load Files")
            file_json=gr.JSON()
    sub_b = submit_b.click(agent, [prompt,chatbot,mod_c],chatbot)
    sub_p = prompt.submit(agent, [prompt,chatbot,mod_c],chatbot)
    stop_b.click(None,None,None, cancels=[sub_b,sub_p])
ux.queue(default_concurrency_limit=20).launch(max_threads=40)