Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import PyPDF2 | |
from pdf2image import convert_from_path, convert_from_bytes | |
import pytesseract | |
from PIL import Image | |
import io | |
import os | |
from huggingface_hub import HfApi, create_repo | |
import re | |
from datetime import datetime | |
import urllib.parse | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Initialize Hugging Face API | |
HF_TOKEN = os.getenv("HF_TOKEN") # Set in Hugging Face Spaces Secrets | |
REPO_NAME = "pdf-images-extracted" # Hugging Face dataset repo | |
hf_api = HfApi() | |
def ensure_hf_dataset(): | |
"""Create or get Hugging Face dataset repository.""" | |
try: | |
repo_id = create_repo(repo_id=REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True) | |
return repo_id | |
except Exception as e: | |
logger.error(f"Error creating dataset repo: {str(e)}") | |
return f"Error creating dataset repo: {str(e)}" | |
def upload_image_to_hf(image, filename): | |
"""Upload an image to Hugging Face dataset and return its URL.""" | |
repo_id = ensure_hf_dataset() | |
if isinstance(repo_id, str) and repo_id.startswith("Error"): | |
return repo_id | |
try: | |
# Save image temporarily | |
temp_path = f"/tmp/temp_{filename}.png" | |
image.save(temp_path, format="PNG") | |
# Upload to Hugging Face dataset | |
file_url = hf_api.upload_file( | |
path_or_fileobj=temp_path, | |
path_in_repo=f"images/{filename}.png", | |
repo_id=repo_id, | |
repo_type="dataset", | |
token=HF_TOKEN | |
) | |
os.remove(temp_path) | |
return file_url | |
except Exception as e: | |
logger.error(f"Error uploading image: {str(e)}") | |
return f"Error uploading image: {str(e)}" | |
def extract_text_from_pdf(pdf_input): | |
"""Extract text from PDF (URL or file) using PyPDF2.""" | |
try: | |
if isinstance(pdf_input, str): # URL case | |
response = requests.get(pdf_input, stream=True) | |
response.raise_for_status() | |
pdf_file = io.BytesIO(response.content) | |
else: # File upload case | |
pdf_file = pdf_input | |
reader = PyPDF2.PdfReader(pdf_file) | |
text = "" | |
for page in reader.pages: | |
page_text = page.extract_text() or "" | |
text += page_text + "\n\n" | |
return text | |
except Exception as e: | |
logger.error(f"Error extracting text: {str(e)}") | |
return f"Error extracting text: {str(e)}" | |
def extract_images_from_pdf(pdf_input): | |
"""Extract images from PDF (URL or file) and convert to PIL images.""" | |
try: | |
if isinstance(pdf_input, str): # URL case | |
logger.info(f"Downloading PDF from URL: {pdf_input}") | |
response = requests.get(pdf_input, stream=True) | |
response.raise_for_status() | |
images = convert_from_bytes(response.content) | |
else: # File upload case | |
logger.info(f"Processing uploaded PDF: {pdf_input.name}") | |
images = convert_from_path(pdf_input.name) | |
return images | |
except Exception as e: | |
logger.error(f"Error extracting images: {str(e)}") | |
if "poppler" in str(e).lower(): | |
return "Error: Poppler not found. Ensure poppler-utils is installed and in PATH. In Hugging Face Spaces, poppler-utils should be pre-installed; contact support if this persists." | |
return f"Error extracting images: {str(e)}" | |
def format_to_markdown(text, images): | |
"""Convert extracted text and images to Markdown format.""" | |
markdown_output = "# Extracted PDF Content\n\n" | |
# Clean and format text | |
text = re.sub(r'\n\s*\n', '\n\n', text.strip()) # Remove excessive newlines | |
lines = text.split("\n") | |
for line in lines: | |
# Detect headings (simple heuristic: all caps or specific keywords) | |
if line.isupper() and len(line) > 5: | |
markdown_output += f"## {line}\n\n" | |
# Detect lists (lines starting with numbers or bullets) | |
elif re.match(r'^\s*[\d\-*+]\.\s+', line): | |
markdown_output += f"- {line.strip()[2:]}\n" | |
else: | |
markdown_output += f"{line}\n\n" | |
# Add images with Hugging Face dataset URLs | |
if isinstance(images, list) and images: | |
markdown_output += "## Extracted Images\n\n" | |
for i, image in enumerate(images): | |
ocr_text = pytesseract.image_to_string(image).strip() | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{i}_{timestamp}" | |
image_url = upload_image_to_hf(image, filename) | |
if not image_url.startswith("Error"): | |
markdown_output += f"\n" | |
if ocr_text: | |
markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n" | |
else: | |
markdown_output += f"**Image {i+1} Error:** {image_url}\n\n" | |
return markdown_output | |
def process_pdf(pdf_input, pdf_url): | |
"""Main function to process PDF input (file or URL) and generate Markdown.""" | |
if not HF_TOKEN: | |
return "Error: HF_TOKEN not set in Spaces Secrets." | |
# Decode URL-encoded string if provided | |
if pdf_url and pdf_url.strip(): | |
pdf_url = urllib.parse.unquote(pdf_url) | |
logger.info(f"Decoded URL: {pdf_url}") | |
try: | |
response = requests.head(pdf_url, allow_redirects=True) | |
response.raise_for_status() | |
pdf_input = pdf_url | |
except requests.RequestException as e: | |
logger.error(f"Error accessing URL: {str(e)}") | |
return f"Error accessing URL: {str(e)}" | |
elif not pdf_input: | |
return "Error: Please provide a PDF file or URL." | |
text = extract_text_from_pdf(pdf_input) | |
images = extract_images_from_pdf(pdf_input) | |
if isinstance(text, str) and text.startswith("Error"): | |
return text | |
if isinstance(images, str) and images.startswith("Error"): | |
return images | |
markdown_output = format_to_markdown(text, images) | |
return markdown_output | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=process_pdf, | |
inputs=[ | |
gr.File(label="Upload PDF File", type="filepath"), | |
gr.Textbox(label="PDF URL", placeholder="Enter the URL of the PDF (supports URL-encoded strings with spaces)"), | |
], | |
outputs=gr.Markdown(label="Markdown Output"), | |
title="PDF to Markdown Converter", | |
description="Upload a PDF file or provide a PDF URL (including URL-encoded strings with spaces) to convert it into a Markdown document. Images and charts are extracted, uploaded to a Hugging Face dataset, and linked in the Markdown. Formatting (e.g., headings, lists) is preserved. Requires HF_TOKEN in Spaces Secrets. Note: Requires poppler-utils and tesseract-ocr, which are pre-installed in Hugging Face Spaces.", | |
) | |
if __name__ == "__main__": | |
iface.launch() |