Spaces:
Sleeping
Sleeping
File size: 20,615 Bytes
9bc382d a87a8f6 8323e8f a87a8f6 9bc382d a87a8f6 8323e8f a87a8f6 9bc382d a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 35151aa 8323e8f 35151aa a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 9bc382d a87a8f6 35151aa a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 8323e8f a87a8f6 35151aa a87a8f6 8323e8f a87a8f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import io
import re # Still needed for some image filename manipulation if any, but not for text formatting
import logging
import subprocess
from datetime import datetime
import urllib.parse
import tempfile
import json # For streaming JSON messages
import time # For gevent.sleep
from flask import Flask, request, render_template, Response, stream_with_context
from werkzeug.utils import secure_filename
# Ensure gevent is imported and monkey patched if needed for other libraries
# from gevent import monkey
# monkey.patch_all() # Apply this early if you suspect issues with other libs
import requests # For requests.exceptions.HTTPError
from requests.exceptions import HTTPError as RequestsHTTPError # Specific import for clarity
# pdfplumber is no longer needed
import pdf2image
from pdf2image import convert_from_path, convert_from_bytes
# from pdf2image.exceptions import ... # If you need to catch specific pdf2image errors
import pytesseract
from PIL import Image
from huggingface_hub import HfApi, create_repo
# --- Flask App Initialization ---
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = tempfile.gettempdir()
app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 # 50 MB limit for uploads, adjust as needed
# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# --- Hugging Face Configuration ---
HF_TOKEN = os.getenv("HF_TOKEN")
HF_DATASET_REPO_NAME = os.getenv("HF_DATASET_REPO_NAME", "pdf-images-extracted")
hf_api = HfApi()
# --- Helper to yield messages for streaming ---
def yield_message(type, data):
"""Helper to format messages as JSON strings for streaming."""
return json.dumps({"type": type, **data}) + "\n"
# --- PDF Processing Helper Functions (Adapted for Streaming) ---
def check_poppler():
try:
result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True, check=False)
version_info_log = result.stderr.strip() if result.stderr else result.stdout.strip()
if version_info_log:
logger.info(f"Poppler version check: {version_info_log.splitlines()[0] if version_info_log else 'No version output'}")
else:
logger.info("Poppler 'pdftoppm -v' ran. Assuming Poppler is present.")
return True
except FileNotFoundError:
logger.error("Poppler (pdftoppm command) not found. Ensure poppler-utils is installed and in PATH.")
return False
except Exception as e:
logger.error(f"An unexpected error occurred during Poppler check: {str(e)}")
return False
def ensure_hf_dataset():
if not HF_TOKEN:
msg = "HF_TOKEN is not set. Cannot ensure Hugging Face dataset. Image uploads will fail."
logger.warning(msg)
return "Error: " + msg
try:
repo_id_obj = create_repo(repo_id=HF_DATASET_REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
logger.info(f"Dataset repo ensured: {repo_id_obj.repo_id}")
return repo_id_obj.repo_id
except RequestsHTTPError as e:
if e.response is not None and e.response.status_code == 409:
logger.info(f"Dataset repo '{HF_DATASET_REPO_NAME}' already exists (HTTP 409).")
try:
user_info = hf_api.whoami(token=HF_TOKEN)
namespace = user_info.get('name') if user_info else None
if namespace:
return f"{namespace}/{HF_DATASET_REPO_NAME}"
else:
logger.warning(f"Could not determine namespace for existing repo '{HF_DATASET_REPO_NAME}'. Using generic ID.")
return HF_DATASET_REPO_NAME
except Exception as whoami_e:
logger.error(f"Could not determine namespace for existing repo via whoami due to: {whoami_e}. Using generic ID.")
return HF_DATASET_REPO_NAME
else:
status_code = e.response.status_code if e.response is not None else "Unknown"
logger.error(f"Hugging Face dataset HTTP error (Status: {status_code}): {str(e)}")
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}' due to HTTP error: {str(e)}"
except Exception as e:
logger.error(f"Hugging Face dataset general error: {str(e)}", exc_info=True)
return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
def upload_image_to_hf_stream(image_pil, filename_base, page_num_for_log=""):
repo_id_or_error = ensure_hf_dataset()
if isinstance(repo_id_or_error, str) and repo_id_or_error.startswith("Error"):
return repo_id_or_error
repo_id = repo_id_or_error
temp_image_path = None
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
repo_filename = f"images/{filename_base}_{page_num_for_log}_{timestamp}.png"
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
with tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=app.config['UPLOAD_FOLDER']) as tmp_file:
temp_image_path = tmp_file.name
image_pil.save(temp_image_path, format="PNG")
logger.info(f"Attempting to upload {temp_image_path} to {repo_id}/{repo_filename}")
file_url = hf_api.upload_file(
path_or_fileobj=temp_image_path, path_in_repo=repo_filename,
repo_id=repo_id, repo_type="dataset", token=HF_TOKEN
)
logger.info(f"Successfully uploaded image: {file_url}")
return file_url
except Exception as e:
logger.error(f"Image upload error for {filename_base}{page_num_for_log}: {str(e)}", exc_info=True)
return f"Error uploading image {filename_base}{page_num_for_log}: {str(e)}"
finally:
if temp_image_path and os.path.exists(temp_image_path):
try: os.remove(temp_image_path)
except OSError as ose: logger.error(f"Error removing temp image file {temp_image_path}: {ose}")
# format_page_text_to_markdown_chunk function is removed as it's no longer used.
# --- Main PDF Processing Logic (Generator Function for Streaming) ---
def generate_pdf_conversion_stream(pdf_input_source_path_or_url):
try:
yield yield_message("markdown_replace", {"content": "# Extracted Images and OCR Text\n\n"})
time.sleep(0.01)
actual_pdf_input_for_images = None
is_input_bytes = False
source_is_url = isinstance(pdf_input_source_path_or_url, str) and \
pdf_input_source_path_or_url.startswith(('http://', 'https://'))
if source_is_url:
yield yield_message("status", {"message": f"Downloading PDF from URL..."})
time.sleep(0.01)
try:
response = requests.get(pdf_input_source_path_or_url, stream=False, timeout=60)
response.raise_for_status()
actual_pdf_input_for_images = response.content
is_input_bytes = True
yield yield_message("status", {"message": f"PDF downloaded from URL ({len(actual_pdf_input_for_images)/1024:.2f} KB)."})
time.sleep(0.01)
except RequestsHTTPError as e:
logger.error(f"URL fetch HTTP error: {str(e)} (Status: {e.response.status_code if e.response else 'N/A'})", exc_info=True)
yield yield_message("error", {"message": f"Error fetching PDF from URL (HTTP {e.response.status_code if e.response else 'N/A'}): {e.response.reason if e.response else str(e)}"})
return
except requests.RequestException as e:
logger.error(f"URL fetch network error: {str(e)}", exc_info=True)
yield yield_message("error", {"message": f"Network error fetching PDF from URL: {str(e)}"})
return
else:
actual_pdf_input_for_images = pdf_input_source_path_or_url
is_input_bytes = False
yield yield_message("status", {"message": f"Processing local PDF file..."})
time.sleep(0.01)
# ----- Direct Text Extraction (using pdfplumber) is REMOVED -----
# ----- Image Extraction and OCR -----
if not check_poppler():
yield yield_message("error", {"message": "Poppler (for image extraction) not found or not working."})
else:
yield yield_message("status", {"message": "Starting image extraction and OCR..."})
# The "## Extracted Images" title is now more specific
yield yield_message("markdown_chunk", {"content": "## Extracted Images & OCR Text from PDF Pages\n\n"})
if not HF_TOKEN:
yield yield_message("markdown_chunk", {"content": "**Note:** `HF_TOKEN` not set. Images will be described but not uploaded.\n\n"})
time.sleep(0.01)
extracted_pil_images_overall_count = 0
try:
if actual_pdf_input_for_images:
try: # Batched conversion attempt
pdf_info = None
if is_input_bytes:
pdf_info = pdf2image.pdfinfo_from_bytes(actual_pdf_input_for_images, userpw=None, poppler_path=None)
else:
pdf_info = pdf2image.pdfinfo_from_path(actual_pdf_input_for_images, userpw=None, poppler_path=None)
num_image_pages = pdf_info.get("Pages", 0)
yield yield_message("status", {"message": f"PDF has {num_image_pages} page(s) for image conversion and OCR."})
batch_size = 1
for page_idx_start in range(1, num_image_pages + 1, batch_size):
page_idx_end = min(page_idx_start + batch_size - 1, num_image_pages)
yield yield_message("status", {"message": f"Converting PDF page(s) {page_idx_start}-{page_idx_end} to image(s)..."})
time.sleep(0.01)
page_images_pil = []
if is_input_bytes:
page_images_pil = convert_from_bytes(actual_pdf_input_for_images, dpi=150, first_page=page_idx_start, last_page=page_idx_end)
else:
page_images_pil = convert_from_path(actual_pdf_input_for_images, dpi=150, first_page=page_idx_start, last_page=page_idx_end)
for img_idx_in_batch, img_pil in enumerate(page_images_pil):
extracted_pil_images_overall_count += 1
current_pdf_page_num = page_idx_start + img_idx_in_batch
page_num_for_log = f"pdfpage_{current_pdf_page_num}"
yield yield_message("status", {"message": f"Processing image {extracted_pil_images_overall_count} (from PDF page {current_pdf_page_num}) (OCR & Upload)..."})
time.sleep(0.01)
ocr_text = ""
try:
ocr_text = pytesseract.image_to_string(img_pil).strip()
if ocr_text: yield yield_message("status", {"message": f" OCR successful for image {extracted_pil_images_overall_count}."})
else: yield yield_message("status", {"message": f" OCR complete for image {extracted_pil_images_overall_count} (no text found)."})
except Exception as ocr_e:
logger.error(f"OCR error for image {extracted_pil_images_overall_count}: {str(ocr_e)}")
ocr_text = f"OCR failed: {str(ocr_e)}"
image_md_chunk = f"### Image from PDF Page {current_pdf_page_num}\n"
if HF_TOKEN:
image_url_or_error = upload_image_to_hf_stream(img_pil, "pdf_page_image", page_num_for_log)
if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
image_md_chunk += f"\n"
yield yield_message("status", {"message": f" Image {extracted_pil_images_overall_count} uploaded."})
else:
image_md_chunk += f"**Image {extracted_pil_images_overall_count} (Upload Error):** {str(image_url_or_error)}\n\n"
yield yield_message("error", {"message": f"Failed to upload image {extracted_pil_images_overall_count}: {str(image_url_or_error)}"})
else:
image_md_chunk += f"**Image {extracted_pil_images_overall_count} (not uploaded due to missing HF_TOKEN)**\n"
if ocr_text:
image_md_chunk += f"**OCR Text (from PDF Page {current_pdf_page_num}):**\n```\n{ocr_text}\n```\n\n"
else:
image_md_chunk += f"_(No text detected by OCR for image from PDF page {current_pdf_page_num})_\n\n"
yield yield_message("image_md", {"content": image_md_chunk})
time.sleep(0.01)
except Exception as e_img_info:
logger.error(f"Could not get PDF info for image batching or during batched conversion: {e_img_info}", exc_info=True)
yield yield_message("error", {"message": f"Error preparing for image extraction: {e_img_info}. Trying bulk conversion."})
# Fallback to bulk conversion
bulk_images_pil = []
if is_input_bytes:
bulk_images_pil = convert_from_bytes(actual_pdf_input_for_images, dpi=150)
else:
bulk_images_pil = convert_from_path(actual_pdf_input_for_images, dpi=150)
yield yield_message("status", {"message": f"Fallback: Converted {len(bulk_images_pil)} PDF pages to images in bulk."})
for i, img_pil in enumerate(bulk_images_pil):
extracted_pil_images_overall_count +=1
page_num_for_log = f"bulk_image_{i+1}"
yield yield_message("status", {"message": f"Processing image {extracted_pil_images_overall_count} (bulk page {i+1}) (OCR & Upload)..."})
ocr_text = ""
try: ocr_text = pytesseract.image_to_string(img_pil).strip()
except Exception as e: ocr_text = f"OCR Error: {e}"
image_md_chunk = f"### Image from PDF Page (Bulk {i+1})\n"
if HF_TOKEN:
image_url_or_error = upload_image_to_hf_stream(img_pil, "pdf_page_image_fallback", page_num_for_log)
if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
image_md_chunk += f"\n"
else:
image_md_chunk += f"**Upload Error:** {str(image_url_or_error)}\n"
else:
image_md_chunk += f"**Image {extracted_pil_images_overall_count} (Fallback - not uploaded)**\n"
if ocr_text: image_md_chunk += f"**OCR Text (Bulk Page {i+1}):**\n```\n{ocr_text}\n```\n\n"
else: image_md_chunk += f"_(No text detected by OCR for bulk image {i+1})_\n\n"
yield yield_message("image_md", {"content": image_md_chunk})
time.sleep(0.01)
else:
yield yield_message("status", {"message": "No valid PDF input source provided for image extraction."})
except Exception as e:
logger.error(f"Error during image extraction/OCR processing: {str(e)}", exc_info=True)
yield yield_message("error", {"message": f"Error during image extraction/OCR: {str(e)}"})
yield yield_message("final_status", {"message": "Image extraction and OCR processing complete."})
except Exception as e:
logger.error(f"Unhandled error in PDF conversion stream: {str(e)}", exc_info=True)
yield yield_message("error", {"message": f"Critical processing error: {str(e)}"})
# --- Flask Routes ---
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/process-stream', methods=['POST'])
def process_pdf_stream():
pdf_file = request.files.get('pdf_file')
pdf_url = request.form.get('pdf_url', '').strip()
outer_temp_pdf_path = None
def stream_processor():
nonlocal outer_temp_pdf_path
pdf_input_source_for_generator = None
try:
if pdf_file and pdf_file.filename:
if not pdf_file.filename.lower().endswith('.pdf'):
yield yield_message("error", {"message": "Uploaded file is not a PDF."})
return
filename = secure_filename(pdf_file.filename)
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Save to a temporary file that generate_pdf_conversion_stream can access by path
fd, temp_path = tempfile.mkstemp(suffix=".pdf", prefix="upload_", dir=app.config['UPLOAD_FOLDER'])
os.close(fd) # Close the file descriptor from mkstemp
pdf_file.save(temp_path) # Save the uploaded file's content to this path
outer_temp_pdf_path = temp_path # Store for cleanup
logger.info(f"Uploaded PDF saved to temporary path: {outer_temp_pdf_path}")
pdf_input_source_for_generator = outer_temp_pdf_path # Pass the path
yield yield_message("status", {"message": f"Processing uploaded PDF: {filename}"})
time.sleep(0.01)
elif pdf_url:
unquoted_url = urllib.parse.unquote(pdf_url)
if not (unquoted_url.startswith('http://') or unquoted_url.startswith('https://')):
yield yield_message("error", {"message": "Invalid URL scheme. Must be http or https."})
return
pdf_input_source_for_generator = unquoted_url # Pass the URL string
yield yield_message("status", {"message": f"Preparing to process PDF from URL: {unquoted_url}"})
time.sleep(0.01)
else:
yield yield_message("error", {"message": "No PDF file uploaded and no PDF URL provided."})
return
for message_part in generate_pdf_conversion_stream(pdf_input_source_for_generator):
yield message_part
except Exception as e:
logger.error(f"Error setting up stream or in initial validation: {str(e)}", exc_info=True)
yield yield_message("error", {"message": f"Setup error: {str(e)}"})
finally:
if outer_temp_pdf_path and os.path.exists(outer_temp_pdf_path):
try:
os.remove(outer_temp_pdf_path)
logger.info(f"Cleaned up temporary PDF: {outer_temp_pdf_path}")
except OSError as ose:
logger.error(f"Error removing temporary PDF {outer_temp_pdf_path}: {ose}")
return Response(stream_with_context(stream_processor()), mimetype='application/x-ndjson')
# --- Main Execution ---
if __name__ == '__main__':
if not check_poppler():
logger.warning("Poppler utilities might not be installed correctly. Image processing might fail.")
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
app.run(host='0.0.0.0', port=int(os.getenv("PORT", 7860)), debug=True, threaded=True) |