File size: 6,898 Bytes
f86ad35
 
 
 
 
 
0e0f376
f86ad35
 
 
 
0dd31f7
155ac2a
 
 
 
 
f86ad35
 
77541b8
0dd31f7
f86ad35
 
0dd31f7
 
f86ad35
0dd31f7
f86ad35
 
155ac2a
0dd31f7
f86ad35
 
0dd31f7
 
f86ad35
 
 
 
 
77541b8
f86ad35
 
0dd31f7
f86ad35
 
 
 
0dd31f7
f86ad35
 
 
 
 
155ac2a
f86ad35
 
0e0f376
 
f86ad35
0e0f376
 
 
 
 
 
f86ad35
 
 
 
 
 
 
155ac2a
f86ad35
 
0e0f376
 
f86ad35
0e0f376
155ac2a
0e0f376
 
f86ad35
 
155ac2a
0e0f376
f86ad35
 
155ac2a
 
 
f86ad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd31f7
f86ad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77541b8
 
 
0dd31f7
f86ad35
0dd31f7
155ac2a
0dd31f7
 
0e0f376
 
0dd31f7
155ac2a
0dd31f7
0e0f376
f86ad35
 
0e0f376
 
f86ad35
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0f376
f86ad35
 
 
155ac2a
f86ad35
 
 
77541b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import requests
import PyPDF2
from pdf2image import convert_from_path, convert_from_bytes
import pytesseract
from PIL import Image
import io
import os
from huggingface_hub import HfApi, create_repo
import re
from datetime import datetime
import urllib.parse
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize Hugging Face API
HF_TOKEN = os.getenv("HF_TOKEN")  # Set in Hugging Face Spaces Secrets
REPO_NAME = "pdf-images-extracted"  # Hugging Face dataset repo
hf_api = HfApi()

def ensure_hf_dataset():
    """Create or get Hugging Face dataset repository."""
    try:
        repo_id = create_repo(repo_id=REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
        return repo_id
    except Exception as e:
        logger.error(f"Error creating dataset repo: {str(e)}")
        return f"Error creating dataset repo: {str(e)}"

def upload_image_to_hf(image, filename):
    """Upload an image to Hugging Face dataset and return its URL."""
    repo_id = ensure_hf_dataset()
    if isinstance(repo_id, str) and repo_id.startswith("Error"):
        return repo_id

    try:
        # Save image temporarily
        temp_path = f"/tmp/temp_{filename}.png"
        image.save(temp_path, format="PNG")
        
        # Upload to Hugging Face dataset
        file_url = hf_api.upload_file(
            path_or_fileobj=temp_path,
            path_in_repo=f"images/{filename}.png",
            repo_id=repo_id,
            repo_type="dataset",
            token=HF_TOKEN
        )
        os.remove(temp_path)
        return file_url
    except Exception as e:
        logger.error(f"Error uploading image: {str(e)}")
        return f"Error uploading image: {str(e)}"

def extract_text_from_pdf(pdf_input):
    """Extract text from PDF (URL or file) using PyPDF2."""
    try:
        if isinstance(pdf_input, str):  # URL case
            response = requests.get(pdf_input, stream=True)
            response.raise_for_status()
            pdf_file = io.BytesIO(response.content)
        else:  # File upload case
            pdf_file = pdf_input
        reader = PyPDF2.PdfReader(pdf_file)
        text = ""
        for page in reader.pages:
            page_text = page.extract_text() or ""
            text += page_text + "\n\n"
        return text
    except Exception as e:
        logger.error(f"Error extracting text: {str(e)}")
        return f"Error extracting text: {str(e)}"

def extract_images_from_pdf(pdf_input):
    """Extract images from PDF (URL or file) and convert to PIL images."""
    try:
        if isinstance(pdf_input, str):  # URL case
            logger.info(f"Downloading PDF from URL: {pdf_input}")
            response = requests.get(pdf_input, stream=True)
            response.raise_for_status()
            images = convert_from_bytes(response.content)
        else:  # File upload case
            logger.info(f"Processing uploaded PDF: {pdf_input.name}")
            images = convert_from_path(pdf_input.name)
        return images
    except Exception as e:
        logger.error(f"Error extracting images: {str(e)}")
        if "poppler" in str(e).lower():
            return "Error: Poppler not found. Ensure poppler-utils is installed and in PATH. In Hugging Face Spaces, poppler-utils should be pre-installed; contact support if this persists."
        return f"Error extracting images: {str(e)}"

def format_to_markdown(text, images):
    """Convert extracted text and images to Markdown format."""
    markdown_output = "# Extracted PDF Content\n\n"
    
    # Clean and format text
    text = re.sub(r'\n\s*\n', '\n\n', text.strip())  # Remove excessive newlines
    lines = text.split("\n")
    for line in lines:
        # Detect headings (simple heuristic: all caps or specific keywords)
        if line.isupper() and len(line) > 5:
            markdown_output += f"## {line}\n\n"
        # Detect lists (lines starting with numbers or bullets)
        elif re.match(r'^\s*[\d\-*+]\.\s+', line):
            markdown_output += f"- {line.strip()[2:]}\n"
        else:
            markdown_output += f"{line}\n\n"
    
    # Add images with Hugging Face dataset URLs
    if isinstance(images, list) and images:
        markdown_output += "## Extracted Images\n\n"
        for i, image in enumerate(images):
            ocr_text = pytesseract.image_to_string(image).strip()
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"image_{i}_{timestamp}"
            image_url = upload_image_to_hf(image, filename)
            
            if not image_url.startswith("Error"):
                markdown_output += f"![Image {i+1}]({image_url})\n"
                if ocr_text:
                    markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
            else:
                markdown_output += f"**Image {i+1} Error:** {image_url}\n\n"
    
    return markdown_output

def process_pdf(pdf_input, pdf_url):
    """Main function to process PDF input (file or URL) and generate Markdown."""
    if not HF_TOKEN:
        return "Error: HF_TOKEN not set in Spaces Secrets."

    # Decode URL-encoded string if provided
    if pdf_url and pdf_url.strip():
        pdf_url = urllib.parse.unquote(pdf_url)
        logger.info(f"Decoded URL: {pdf_url}")
        try:
            response = requests.head(pdf_url, allow_redirects=True)
            response.raise_for_status()
            pdf_input = pdf_url
        except requests.RequestException as e:
            logger.error(f"Error accessing URL: {str(e)}")
            return f"Error accessing URL: {str(e)}"
    elif not pdf_input:
        return "Error: Please provide a PDF file or URL."

    text = extract_text_from_pdf(pdf_input)
    images = extract_images_from_pdf(pdf_input)

    if isinstance(text, str) and text.startswith("Error"):
        return text
    if isinstance(images, str) and images.startswith("Error"):
        return images

    markdown_output = format_to_markdown(text, images)
    return markdown_output

# Gradio Interface
iface = gr.Interface(
    fn=process_pdf,
    inputs=[
        gr.File(label="Upload PDF File", type="filepath"),
        gr.Textbox(label="PDF URL", placeholder="Enter the URL of the PDF (supports URL-encoded strings with spaces)"),
    ],
    outputs=gr.Markdown(label="Markdown Output"),
    title="PDF to Markdown Converter",
    description="Upload a PDF file or provide a PDF URL (including URL-encoded strings with spaces) to convert it into a Markdown document. Images and charts are extracted, uploaded to a Hugging Face dataset, and linked in the Markdown. Formatting (e.g., headings, lists) is preserved. Requires HF_TOKEN in Spaces Secrets. Note: Requires poppler-utils and tesseract-ocr, which are pre-installed in Hugging Face Spaces.",
)

if __name__ == "__main__":
    iface.launch()