Spaces:
Sleeping
Sleeping
File size: 6,898 Bytes
f86ad35 0e0f376 f86ad35 0dd31f7 155ac2a f86ad35 77541b8 0dd31f7 f86ad35 0dd31f7 f86ad35 0dd31f7 f86ad35 155ac2a 0dd31f7 f86ad35 0dd31f7 f86ad35 77541b8 f86ad35 0dd31f7 f86ad35 0dd31f7 f86ad35 155ac2a f86ad35 0e0f376 f86ad35 0e0f376 f86ad35 155ac2a f86ad35 0e0f376 f86ad35 0e0f376 155ac2a 0e0f376 f86ad35 155ac2a 0e0f376 f86ad35 155ac2a f86ad35 0dd31f7 f86ad35 77541b8 0dd31f7 f86ad35 0dd31f7 155ac2a 0dd31f7 0e0f376 0dd31f7 155ac2a 0dd31f7 0e0f376 f86ad35 0e0f376 f86ad35 0e0f376 f86ad35 155ac2a f86ad35 77541b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import requests
import PyPDF2
from pdf2image import convert_from_path, convert_from_bytes
import pytesseract
from PIL import Image
import io
import os
from huggingface_hub import HfApi, create_repo
import re
from datetime import datetime
import urllib.parse
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Hugging Face API
HF_TOKEN = os.getenv("HF_TOKEN") # Set in Hugging Face Spaces Secrets
REPO_NAME = "pdf-images-extracted" # Hugging Face dataset repo
hf_api = HfApi()
def ensure_hf_dataset():
"""Create or get Hugging Face dataset repository."""
try:
repo_id = create_repo(repo_id=REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
return repo_id
except Exception as e:
logger.error(f"Error creating dataset repo: {str(e)}")
return f"Error creating dataset repo: {str(e)}"
def upload_image_to_hf(image, filename):
"""Upload an image to Hugging Face dataset and return its URL."""
repo_id = ensure_hf_dataset()
if isinstance(repo_id, str) and repo_id.startswith("Error"):
return repo_id
try:
# Save image temporarily
temp_path = f"/tmp/temp_{filename}.png"
image.save(temp_path, format="PNG")
# Upload to Hugging Face dataset
file_url = hf_api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=f"images/{filename}.png",
repo_id=repo_id,
repo_type="dataset",
token=HF_TOKEN
)
os.remove(temp_path)
return file_url
except Exception as e:
logger.error(f"Error uploading image: {str(e)}")
return f"Error uploading image: {str(e)}"
def extract_text_from_pdf(pdf_input):
"""Extract text from PDF (URL or file) using PyPDF2."""
try:
if isinstance(pdf_input, str): # URL case
response = requests.get(pdf_input, stream=True)
response.raise_for_status()
pdf_file = io.BytesIO(response.content)
else: # File upload case
pdf_file = pdf_input
reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in reader.pages:
page_text = page.extract_text() or ""
text += page_text + "\n\n"
return text
except Exception as e:
logger.error(f"Error extracting text: {str(e)}")
return f"Error extracting text: {str(e)}"
def extract_images_from_pdf(pdf_input):
"""Extract images from PDF (URL or file) and convert to PIL images."""
try:
if isinstance(pdf_input, str): # URL case
logger.info(f"Downloading PDF from URL: {pdf_input}")
response = requests.get(pdf_input, stream=True)
response.raise_for_status()
images = convert_from_bytes(response.content)
else: # File upload case
logger.info(f"Processing uploaded PDF: {pdf_input.name}")
images = convert_from_path(pdf_input.name)
return images
except Exception as e:
logger.error(f"Error extracting images: {str(e)}")
if "poppler" in str(e).lower():
return "Error: Poppler not found. Ensure poppler-utils is installed and in PATH. In Hugging Face Spaces, poppler-utils should be pre-installed; contact support if this persists."
return f"Error extracting images: {str(e)}"
def format_to_markdown(text, images):
"""Convert extracted text and images to Markdown format."""
markdown_output = "# Extracted PDF Content\n\n"
# Clean and format text
text = re.sub(r'\n\s*\n', '\n\n', text.strip()) # Remove excessive newlines
lines = text.split("\n")
for line in lines:
# Detect headings (simple heuristic: all caps or specific keywords)
if line.isupper() and len(line) > 5:
markdown_output += f"## {line}\n\n"
# Detect lists (lines starting with numbers or bullets)
elif re.match(r'^\s*[\d\-*+]\.\s+', line):
markdown_output += f"- {line.strip()[2:]}\n"
else:
markdown_output += f"{line}\n\n"
# Add images with Hugging Face dataset URLs
if isinstance(images, list) and images:
markdown_output += "## Extracted Images\n\n"
for i, image in enumerate(images):
ocr_text = pytesseract.image_to_string(image).strip()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{i}_{timestamp}"
image_url = upload_image_to_hf(image, filename)
if not image_url.startswith("Error"):
markdown_output += f"\n"
if ocr_text:
markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
else:
markdown_output += f"**Image {i+1} Error:** {image_url}\n\n"
return markdown_output
def process_pdf(pdf_input, pdf_url):
"""Main function to process PDF input (file or URL) and generate Markdown."""
if not HF_TOKEN:
return "Error: HF_TOKEN not set in Spaces Secrets."
# Decode URL-encoded string if provided
if pdf_url and pdf_url.strip():
pdf_url = urllib.parse.unquote(pdf_url)
logger.info(f"Decoded URL: {pdf_url}")
try:
response = requests.head(pdf_url, allow_redirects=True)
response.raise_for_status()
pdf_input = pdf_url
except requests.RequestException as e:
logger.error(f"Error accessing URL: {str(e)}")
return f"Error accessing URL: {str(e)}"
elif not pdf_input:
return "Error: Please provide a PDF file or URL."
text = extract_text_from_pdf(pdf_input)
images = extract_images_from_pdf(pdf_input)
if isinstance(text, str) and text.startswith("Error"):
return text
if isinstance(images, str) and images.startswith("Error"):
return images
markdown_output = format_to_markdown(text, images)
return markdown_output
# Gradio Interface
iface = gr.Interface(
fn=process_pdf,
inputs=[
gr.File(label="Upload PDF File", type="filepath"),
gr.Textbox(label="PDF URL", placeholder="Enter the URL of the PDF (supports URL-encoded strings with spaces)"),
],
outputs=gr.Markdown(label="Markdown Output"),
title="PDF to Markdown Converter",
description="Upload a PDF file or provide a PDF URL (including URL-encoded strings with spaces) to convert it into a Markdown document. Images and charts are extracted, uploaded to a Hugging Face dataset, and linked in the Markdown. Formatting (e.g., headings, lists) is preserved. Requires HF_TOKEN in Spaces Secrets. Note: Requires poppler-utils and tesseract-ocr, which are pre-installed in Hugging Face Spaces.",
)
if __name__ == "__main__":
iface.launch() |