Spaces:
Sleeping
Sleeping
File size: 17,658 Bytes
f86ad35 aec5733 f86ad35 0e0f376 f86ad35 40d5277 f86ad35 0dd31f7 155ac2a dc24da7 155ac2a 81314aa 155ac2a f86ad35 81314aa ae3cd0d f86ad35 dc24da7 ae3cd0d dc24da7 ae3cd0d dc24da7 0dd31f7 f86ad35 9db742a ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 0dd31f7 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d 0e0f376 ae3cd0d aec5733 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d dc24da7 ae3cd0d f86ad35 ae3cd0d 0e0f376 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 ae3cd0d f86ad35 77541b8 ae3cd0d 0dd31f7 ae3cd0d 0e0f376 ae3cd0d 0dd31f7 ae3cd0d f86ad35 a492eda 81314aa ae3cd0d a492eda ae3cd0d a492eda f86ad35 81314aa ae3cd0d 81314aa ae3cd0d 81314aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
import requests
import pdfplumber
from pdf2image import convert_from_path, convert_from_bytes
import pytesseract
from PIL import Image
import io
import os
from huggingface_hub import HfApi, create_repo
import re
from datetime import datetime
import urllib.parse
import logging
import subprocess
# Set up logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Initialize Hugging Face API
HF_TOKEN = os.getenv("HF_TOKEN")
REPO_NAME = "pdf-images-extracted" # Consider making this configurable if needed
hf_api = HfApi()
def check_poppler():
try:
result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True)
# pdftoppm -v typically prints version info to stderr
version_info_log = result.stderr.strip() if result.stderr else result.stdout.strip()
if version_info_log:
# Log the first line of the version info
logger.info(f"Poppler version check: {version_info_log.splitlines()[0]}")
else:
logger.info("Poppler 'pdftoppm -v' ran, but no version output on stdout/stderr. Poppler is likely present.")
# The main goal is to confirm 'pdftoppm' is executable.
# FileNotFoundError is the primary concern for "not found".
return True
except FileNotFoundError:
logger.error("Poppler (pdftoppm command) not found. Ensure poppler-utils is installed and in PATH.")
return False
except Exception as e: # Catch any other unexpected errors during subprocess execution
logger.error(f"An unexpected error occurred during Poppler check: {str(e)}")
return False
def ensure_hf_dataset():
try:
if not HF_TOKEN:
# This case should ideally be caught before attempting dataset operations
# However, having a check here is a good safeguard.
logger.error("HF_TOKEN is not set. Cannot ensure Hugging Face dataset.")
return "Error: HF_TOKEN is not set. Please configure it in Space secrets."
# Use hf_api instance which might be pre-configured with token, or pass token explicitly
# create_repo will use token from HfApi if initialized with one, or passed token, or env.
repo_id_obj = create_repo(repo_id=REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
logger.info(f"Dataset repo ensured: {repo_id_obj.repo_id}")
return repo_id_obj.repo_id # repo_id_obj is a RepoUrl object or similar
except Exception as e:
logger.error(f"Hugging Face dataset error: {str(e)}")
return f"Error: Failed to access or create dataset '{REPO_NAME}': {str(e)}"
def upload_image_to_hf(image, filename_base):
# filename_base should not include extension, it will be added.
repo_id_or_error = ensure_hf_dataset()
if isinstance(repo_id_or_error, str) and repo_id_or_error.startswith("Error"):
return repo_id_or_error # Return error message from ensure_hf_dataset
repo_id = repo_id_or_error # Now it's confirmed to be the repo_id string
try:
# Create a unique filename with timestamp in the repo to avoid collisions
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") # Added microseconds for more uniqueness
repo_filename = f"images/{filename_base}_{timestamp}.png"
temp_path = f"/tmp/{filename_base}_{timestamp}.png" # Use unique temp name too
image.save(temp_path, format="PNG")
logger.info(f"Attempting to upload {temp_path} to {repo_id}/{repo_filename}")
file_url = hf_api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=repo_filename,
repo_id=repo_id,
repo_type="dataset",
token=HF_TOKEN # Explicitly pass token for clarity
)
os.remove(temp_path)
logger.info(f"Successfully uploaded image: {file_url}")
return file_url
except Exception as e:
logger.error(f"Image upload error for {filename_base}: {str(e)}")
# Clean up temp file if it exists and an error occurred after its creation
if 'temp_path' in locals() and os.path.exists(temp_path):
try:
os.remove(temp_path)
except OSError as ose:
logger.error(f"Error removing temp file {temp_path} after upload failure: {ose}")
return f"Error uploading image {filename_base}: {str(e)}"
def extract_text_from_pdf(pdf_input_source): # Renamed for clarity (source can be path, URL, or file obj)
try:
if isinstance(pdf_input_source, str): # Indicates a URL
logger.info(f"Fetching PDF from URL for text extraction: {pdf_input_source}")
response = requests.get(pdf_input_source, stream=True, timeout=20) # Increased timeout slightly
response.raise_for_status()
pdf_file_like_object = io.BytesIO(response.content)
logger.info("PDF downloaded successfully from URL.")
else: # Assumes a file object (e.g., from Gradio upload)
logger.info(f"Processing uploaded PDF file for text extraction: {getattr(pdf_input_source, 'name', 'N/A')}")
pdf_file_like_object = pdf_input_source
with pdfplumber.open(pdf_file_like_object) as pdf:
full_text = ""
for i, page in enumerate(pdf.pages):
logger.debug(f"Extracting text from page {i+1}")
page_text = page.extract_text(layout=True, x_density=1, y_density=1) or "" # x_density/y_density can impact layout accuracy
full_text += page_text + "\n\n" # Add double newline as page separator
logger.debug(f"Extracting tables from page {i+1}")
tables = page.extract_tables()
if tables:
for table_idx, table_data in enumerate(tables):
logger.debug(f"Processing table {table_idx+1} on page {i+1}")
if table_data: # Ensure table_data is not empty
table_md = "\n".join([" | ".join(str(cell) if cell is not None else "" for cell in row) for row in table_data])
header_separator = " | ".join(["---"] * len(table_data[0])) if table_data[0] else ""
full_text += f"**Table:**\n{table_md[:table_md.find(chr(10)) if table_md.find(chr(10)) > 0 else len(table_md)]}\n{header_separator}\n{table_md[table_md.find(chr(10))+1 if table_md.find(chr(10)) > 0 else '']}\n\n"
# full_text += f"**Table:**\n{table_md}\n\n" # Simpler table version
logger.info("Text and table extraction successful.")
return full_text
except Exception as e:
logger.error(f"Text extraction error: {str(e)}", exc_info=True)
return f"Error extracting text: {str(e)}"
def extract_images_from_pdf(pdf_input_source): # Renamed for clarity
if not check_poppler():
return "Error: poppler-utils not found or not working correctly. Image extraction depends on it."
try:
images = []
if isinstance(pdf_input_source, str): # Indicates a URL
logger.info(f"Fetching PDF from URL for image extraction: {pdf_input_source}")
response = requests.get(pdf_input_source, stream=True, timeout=20) # Increased timeout
response.raise_for_status()
logger.info("PDF downloaded successfully, converting to images.")
images = convert_from_bytes(response.content, dpi=200) # dpi can be adjusted
else: # Assumes a file object (e.g., from Gradio upload which is a TemporaryFileWrapper)
file_path = getattr(pdf_input_source, 'name', None)
if not file_path:
logger.error("Uploaded PDF file has no name attribute, cannot process for images.")
return "Error: Could not get path from uploaded PDF file for image extraction."
logger.info(f"Processing uploaded PDF file for image extraction: {file_path}")
images = convert_from_path(file_path, dpi=200)
logger.info(f"Successfully extracted {len(images)} image(s) from PDF.")
return images
except Exception as e:
logger.error(f"Image extraction error: {str(e)}", exc_info=True)
return f"Error extracting images: {str(e)}"
def format_to_markdown(text_content, images_list):
markdown_output = "# Extracted PDF Content\n\n"
# Normalize newlines: multiple consecutive newlines become a single blank line (two \n chars)
text_content = re.sub(r'\n\s*\n+', '\n\n', text_content.strip())
lines = text_content.split('\n') # Split by single newline. Blank lines between paragraphs become empty strings.
for i, line_text in enumerate(lines):
line_stripped = line_text.strip()
if not line_stripped: # Handle blank lines explicitly
# Add a single newline to markdown. This helps maintain paragraph separation.
markdown_output += "\n"
continue
# Regex for various list markers: "1.", "*", "-", "+" followed by space and content
list_match = re.match(r'^\s*(?:(?:\d+\.)|[*+-])\s+(.*)', line_stripped)
is_heading_candidate = line_stripped.isupper() and 5 < len(line_stripped) < 100 # Length constraint for ALL CAPS headings
if is_heading_candidate and not list_match: # Check it's not an ALL CAPS list item
markdown_output += f"## {line_stripped}\n\n"
elif list_match:
list_item_text = list_match.group(1) # Get the content part of the list item
markdown_output += f"- {list_item_text}\n" # Single newline for list items to keep them together
else:
# Default: treat as a paragraph line, add double newline for Markdown paragraph
markdown_output += f"{line_text}\n\n"
# Consolidate potentially excessive newlines that might arise from the logic above
markdown_output = re.sub(r'\n\s*\n+', '\n\n', markdown_output.strip())
markdown_output += "\n\n" # Ensure a blank line at the end of text content before images
if isinstance(images_list, list) and images_list:
markdown_output += "## Extracted Images\n\n"
for i, img_pil in enumerate(images_list):
ocr_text = ""
try:
ocr_text = pytesseract.image_to_string(img_pil).strip()
logger.info(f"OCR for image {i+1} successful.")
except Exception as ocr_e:
logger.error(f"OCR error for image {i+1}: {str(ocr_e)}")
ocr_text = f"OCR failed: {str(ocr_e)}"
image_filename_base = f"extracted_image_{i+1}"
image_url_or_error = upload_image_to_hf(img_pil, image_filename_base)
if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
markdown_output += f"\n"
if ocr_text and not ocr_text.startswith("OCR failed:"):
markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
elif ocr_text: # OCR failed message
markdown_output += f"**Image {i+1} OCR Note:** {ocr_text}\n\n"
else: # Error during upload or from ensure_hf_dataset
error_message = str(image_url_or_error) # Ensure it's a string
markdown_output += f"**Image {i+1} (Upload Error):** {error_message}\n\n"
return markdown_output.strip()
def process_pdf(pdf_file_upload, pdf_url_input):
current_status = "Starting PDF processing..."
logger.info(current_status)
if not HF_TOKEN:
current_status = "Error: HF_TOKEN is not set. Please set it in Space secrets for image uploads."
logger.error(current_status)
# App can still try to process text, but image uploads will fail.
# Let's allow text extraction to proceed but warn about images.
# For a stricter approach, uncomment return:
# return current_status, current_status
pdf_input_source = None
if pdf_url_input and pdf_url_input.strip():
resolved_url = urllib.parse.unquote(pdf_url_input.strip())
current_status = f"Attempting to download PDF from URL: {resolved_url}"
logger.info(current_status)
try:
# Use HEAD request to check URL validity and content type quickly
response = requests.head(resolved_url, allow_redirects=True, timeout=10)
response.raise_for_status()
content_type = response.headers.get('content-type', '').lower()
if 'application/pdf' not in content_type:
current_status = f"Error: URL does not point to a PDF file (Content-Type: {content_type})."
logger.error(current_status)
return current_status, current_status
pdf_input_source = resolved_url # Use the URL string as the source
logger.info("PDF URL validated.")
except requests.RequestException as e:
current_status = f"Error accessing URL '{resolved_url}': {str(e)}"
logger.error(current_status)
return current_status, current_status
elif pdf_file_upload:
# pdf_file_upload is a tempfile._TemporaryFileWrapper object from Gradio
pdf_input_source = pdf_file_upload
current_status = f"Processing uploaded PDF file: {pdf_file_upload.name}"
logger.info(current_status)
else:
current_status = "Error: No PDF file uploaded and no PDF URL provided."
logger.error(current_status)
return current_status, current_status
current_status = "Extracting text and tables from PDF..."
logger.info(current_status)
extracted_text = extract_text_from_pdf(pdf_input_source)
if isinstance(extracted_text, str) and extracted_text.startswith("Error extracting text:"):
current_status = f"Text extraction failed. {extracted_text}"
logger.error(current_status)
# Decide if to stop or continue for images
# For now, let's return the error directly
return extracted_text, current_status
# If pdf_input_source was a URL, extract_text_from_pdf already downloaded it.
# For extract_images_from_pdf, we need to pass the URL or file path again.
# If it was an uploaded file, its stream might have been consumed or pointer moved.
# It's safer to re-open/re-access for different libraries if they don't handle streams well.
# However, pdfplumber and pdf2image should handle file paths/objects correctly.
# If pdf_input_source is a file object, reset its read pointer if necessary.
if hasattr(pdf_input_source, 'seek') and not isinstance(pdf_input_source, str):
pdf_input_source.seek(0)
current_status = "Extracting images from PDF..."
logger.info(current_status)
extracted_images = extract_images_from_pdf(pdf_input_source)
if isinstance(extracted_images, str) and extracted_images.startswith("Error"): # Error string from extraction
current_status = f"Image extraction failed or partially failed. {extracted_images}"
logger.warning(current_status) # Warning, as text might still be useful
# We can proceed to format markdown with text and image error.
# Set images to empty list to avoid error in format_to_markdown
extracted_images = [] # Or pass the error string to be included by format_to_markdown
# Let format_to_markdown handle this, for now, we will pass the error string if it happened
# No, format_to_markdown expects a list of images or an error string from check_poppler
# if isinstance(extracted_images, str) -> it's an error string, that is fine.
current_status = "Formatting content to Markdown..."
logger.info(current_status)
# Pass the original extracted_images (which could be an error string or list of PIL images)
markdown_result = format_to_markdown(extracted_text, extracted_images)
current_status = "PDF processing complete."
logger.info(current_status)
return markdown_result, current_status
# Gradio Interface
iface = gr.Interface(
fn=process_pdf,
inputs=[
gr.File(label="Upload PDF File", file_types=[".pdf"]),
gr.Textbox(label="Or Enter PDF URL", placeholder="e.g., https://example.com/file.pdf"),
],
outputs=[
gr.Markdown(label="Markdown Output"),
gr.Textbox(label="Processing Status", interactive=False),
],
title="PDF to Markdown Converter",
description="Convert a PDF (uploaded file or URL) to Markdown. Extracts text, tables, and images. Images are uploaded to a Hugging Face dataset. Requires HF_TOKEN in Spaces Secrets for image functionality.",
allow_flagging="never",
examples=[
[None, "https.arxiv.org/pdf/1706.03762.pdf"], # Attention is All You Need
[None, "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"] # A simple dummy PDF
]
)
if __name__ == "__main__":
logger.info("Starting Gradio app...")
try:
# When running in Hugging Face Spaces, share=False is recommended.
# The Space itself provides the public URL.
iface.launch(server_name="0.0.0.0", server_port=7860, share=False)
logger.info("Gradio app started successfully.")
except Exception as e:
logger.error(f"Failed to start Gradio app: {str(e)}", exc_info=True)
# Re-raise the exception to ensure the script exits if Gradio fails to launch
raise |