File size: 7,233 Bytes
f86ad35
 
aec5733
f86ad35
 
 
0e0f376
f86ad35
40d5277
f86ad35
 
0dd31f7
155ac2a
dc24da7
155ac2a
 
81314aa
155ac2a
f86ad35
 
81314aa
 
f86ad35
 
dc24da7
 
 
 
 
 
 
 
 
0dd31f7
f86ad35
9db742a
 
0dd31f7
81314aa
f86ad35
 
81314aa
 
f86ad35
a492eda
0dd31f7
f86ad35
 
 
77541b8
f86ad35
 
 
 
 
0dd31f7
f86ad35
 
 
81314aa
f86ad35
 
81314aa
f86ad35
 
a492eda
f86ad35
81314aa
 
0e0f376
 
81314aa
0e0f376
aec5733
 
 
9db742a
aec5733
 
 
 
f86ad35
 
81314aa
f86ad35
 
a492eda
dc24da7
81314aa
f86ad35
81314aa
 
0e0f376
f86ad35
81314aa
0e0f376
f86ad35
 
81314aa
f86ad35
 
a492eda
f86ad35
81314aa
f86ad35
 
 
 
 
 
 
 
 
 
 
 
 
 
a492eda
f86ad35
 
 
 
 
 
 
 
a492eda
81314aa
 
77541b8
81314aa
 
 
f86ad35
0dd31f7
81314aa
 
0dd31f7
81314aa
0e0f376
 
0dd31f7
81314aa
 
 
0e0f376
81314aa
 
 
 
 
a492eda
f86ad35
81314aa
 
 
 
 
 
f86ad35
81314aa
 
 
 
 
a492eda
81314aa
 
 
f86ad35
 
a492eda
 
 
81314aa
 
a492eda
 
 
 
 
 
81314aa
a492eda
 
f86ad35
 
81314aa
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import requests
import pdfplumber
from pdf2image import convert_from_path, convert_from_bytes
import pytesseract
from PIL import Image
import io
import os
from huggingface_hub import HfApi, create_repo
import re
from datetime import datetime
import urllib.parse
import logging
import subprocess

# Set up logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# Initialize Hugging Face API
HF_TOKEN = os.getenv("HF_TOKEN")
REPO_NAME = "pdf-images-extracted"
hf_api = HfApi()

def check_poppler():
    try:
        result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True)
        logger.info(f"Poppler version: {result.stdout}")
        return True
    except FileNotFoundError:
        logger.error("Poppler not found in PATH.")
        return False

def ensure_hf_dataset():
    try:
        if not HF_TOKEN:
            raise ValueError("HF_TOKEN is not set")
        repo_id = create_repo(repo_id=REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
        logger.info(f"Dataset repo: {repo_id}")
        return repo_id
    except Exception as e:
        logger.error(f"Dataset error: {str(e)}")
        return f"Error: Failed to access dataset: {str(e)}"

def upload_image_to_hf(image, filename):
    repo_id = ensure_hf_dataset()
    if isinstance(repo_id, str) and repo_id.startswith("Error"):
        return repo_id
    try:
        temp_path = f"/tmp/temp_{filename}.png"
        image.save(temp_path, format="PNG")
        file_url = hf_api.upload_file(
            path_or_fileobj=temp_path,
            path_in_repo=f"images/{filename}.png",
            repo_id=repo_id,
            repo_type="dataset",
            token=HF_TOKEN
        )
        os.remove(temp_path)
        logger.info(f"Uploaded image: {file_url}")
        return file_url
    except Exception as e:
        logger.error(f"Image upload error: {str(e)}")
        return f"Error uploading image: {str(e)}"

def extract_text_from_pdf(pdf_input):
    try:
        if isinstance(pdf_input, str):
            response = requests.get(pdf_input, stream=True, timeout=10)
            response.raise_for_status()
            pdf_file = io.BytesIO(response.content)
        else:
            pdf_file = pdf_input
        with pdfplumber.open(pdf_file) as pdf:
            text = ""
            for page in pdf.pages:
                page_text = page.extract_text(layout=True) or ""
                text += page_text + "\n\n"
                tables = page.extract_tables()
                for table in tables:
                    text += "**Table:**\n" + "\n".join([" | ".join(str(cell) for cell in row) for row in table]) + "\n\n"
        return text
    except Exception as e:
        logger.error(f"Text extraction error: {str(e)}")
        return f"Error extracting text: {str(e)}"

def extract_images_from_pdf(pdf_input):
    if not check_poppler():
        return "Error: poppler-utils not found."
    try:
        if isinstance(pdf_input, str):
            response = requests.get(pdf_input, stream=True, timeout=10)
            response.raise_for_status()
            images = convert_from_bytes(response.content)
        else:
            images = convert_from_path(pdf_input.name)
        return images
    except Exception as e:
        logger.error(f"Image extraction error: {str(e)}")
        return f"Error extracting images: {str(e)}"

def format_to_markdown(text, images):
    markdown_output = "# Extracted PDF Content\n\n"
    text = re.sub(r'\n\s*\n+', '\n\n', text.strip())
    lines = text.split("\n")
    for line in lines:
        if line.isupper() and len(line) > 5:
            markdown_output += f"## {line}\n\n"
        elif re.match(r'^\s*[\d\-*+]\.\s+', line):
            markdown_output += f"- {line.strip()[2:]}\n"
        else:
            markdown_output += f"{line}\n\n"
    if isinstance(images, list) and images:
        markdown_output += "## Extracted Images\n\n"
        for i, image in enumerate(images):
            ocr_text = pytesseract.image_to_string(image).strip()
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"image_{i}_{timestamp}"
            image_url = upload_image_to_hf(image, filename)
            if not image_url.startswith("Error"):
                markdown_output += f"![Image {i+1}]({image_url})\n"
                if ocr_text:
                    markdown_output += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
            else:
                markdown_output += f"**Image {i+1} Error:** {image_url}\n\n"
    return markdown_output

def process_pdf(pdf_input, pdf_url):
    status = "Starting PDF processing..."
    logger.info(status)
    if not HF_TOKEN:
        status = "Error: HF_TOKEN not set."
        logger.error(status)
        return status, status
    if pdf_url and pdf_url.strip():
        pdf_url = urllib.parse.unquote(pdf_url)
        status = f"Downloading PDF from URL: {pdf_url}"
        logger.info(status)
        try:
            response = requests.head(pdf_url, allow_redirects=True, timeout=5)
            response.raise_for_status()
            pdf_input = pdf_url
        except requests.RequestException as e:
            status = f"Error accessing URL: {str(e)}"
            logger.error(status)
            return status, status
    elif not pdf_input:
        status = "Error: No PDF provided."
        logger.error(status)
        return status, status
    status = "Extracting text..."
    logger.info(status)
    text = extract_text_from_pdf(pdf_input)
    if isinstance(text, str) and text.startswith("Error"):
        status = "Text extraction failed."
        logger.error(status)
        return text, status
    status = "Extracting images..."
    logger.info(status)
    images = extract_images_from_pdf(pdf_input)
    if isinstance(images, str) and images.startswith("Error"):
        status = "Image extraction failed."
        logger.error(status)
        return images, status
    status = "Formatting output..."
    logger.info(status)
    markdown_output = format_to_markdown(text, images)
    status = "Processing complete."
    logger.info(status)
    return markdown_output, status

# Gradio Interface
iface = gr.Interface(
    fn=process_pdf,
    inputs=[
        gr.File(label="Upload PDF File", file_types=[".pdf"]),
        gr.Textbox(label="PDF URL", placeholder="Enter PDF URL (e.g., https://example.com/file.pdf)"),
    ],
    outputs=[
        gr.Markdown(label="Markdown Output"),
        gr.Textbox(label="Processing Status", interactive=False),
    ],
    title="PDF to Markdown Converter",
    description="Convert a PDF file or URL to Markdown. Extracts text, images, and tables, with images uploaded to a Hugging Face dataset. Supports URL-encoded strings. Requires HF_TOKEN in Spaces Secrets.",
    allow_flagging="never"
)

if __name__ == "__main__":
    logger.info("Starting Gradio app...")
    try:
        iface.launch(server_name="0.0.0.0", server_port=7860, prevent_thread_lock=True)
        logger.info("Gradio app started successfully.")
    except Exception as e:
        logger.error(f"Failed to start Gradio app: {str(e)}")
        raise