Spaces:
Sleeping
Sleeping
Update server.py
Browse files
server.py
CHANGED
@@ -8,7 +8,7 @@ import sqlite3
|
|
8 |
import time
|
9 |
from dotenv import load_dotenv
|
10 |
|
11 |
-
DEMO_MODE = os.getenv("DEMO_MODE", "
|
12 |
# --- Load Environment & Configuration ---
|
13 |
load_dotenv()
|
14 |
try:
|
@@ -16,9 +16,9 @@ try:
|
|
16 |
HF_DATASETS_AVAILABLE = True
|
17 |
except ImportError:
|
18 |
HF_DATASETS_AVAILABLE = False
|
19 |
-
Features, Value = None, None
|
20 |
|
21 |
-
STORAGE_BACKEND_CONFIG = os.getenv("STORAGE_BACKEND", "
|
22 |
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO")
|
23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
HF_BACKUP_THRESHOLD = int(os.getenv("HF_BACKUP_THRESHOLD", 10))
|
@@ -33,7 +33,7 @@ dirty_operations_count = 0
|
|
33 |
def force_persist_data():
|
34 |
global dirty_operations_count
|
35 |
with db_lock:
|
36 |
-
storage_backend = STORAGE_BACKEND_CONFIG
|
37 |
if storage_backend == "RAM":
|
38 |
return True, "RAM backend. No persistence."
|
39 |
elif storage_backend == "SQLITE":
|
@@ -81,8 +81,7 @@ def load_data():
|
|
81 |
global STORAGE_BACKEND_CONFIG
|
82 |
storage_backend = STORAGE_BACKEND_CONFIG
|
83 |
with db_lock:
|
84 |
-
|
85 |
-
users, posts, comments = {"admin": "password"}, pd.DataFrame(columns=["post_id", "username", "content", "timestamp"]), pd.DataFrame(columns=["comment_id", "post_id", "username", "content", "timestamp"])
|
86 |
|
87 |
if storage_backend == "SQLITE":
|
88 |
try:
|
@@ -90,7 +89,7 @@ def load_data():
|
|
90 |
cursor = conn.cursor()
|
91 |
cursor.execute("CREATE TABLE IF NOT EXISTS users (username TEXT PRIMARY KEY, password TEXT NOT NULL)")
|
92 |
cursor.execute("CREATE TABLE IF NOT EXISTS posts (post_id INTEGER PRIMARY KEY, username TEXT, content TEXT, timestamp TEXT)")
|
93 |
-
cursor.execute("CREATE TABLE IF NOT EXISTS comments (comment_id INTEGER PRIMARY KEY, post_id INTEGER, username TEXT, content TEXT, timestamp TEXT)")
|
94 |
cursor.execute("INSERT OR IGNORE INTO users (username, password) VALUES (?, ?)", ("admin", "password"))
|
95 |
conn.commit()
|
96 |
users = dict(conn.execute("SELECT username, password FROM users").fetchall())
|
@@ -125,7 +124,7 @@ def load_data():
|
|
125 |
try:
|
126 |
user_features = Features({'username': Value('string'), 'password': Value('string')})
|
127 |
post_features = Features({'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string')})
|
128 |
-
comment_features = Features({'comment_id': Value('int64'), 'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string')})
|
129 |
|
130 |
dataset_dict = DatasetDict({
|
131 |
'users': Dataset.from_pandas(pd.DataFrame(list(users.items()), columns=['username', 'password']), features=user_features),
|
@@ -141,11 +140,8 @@ def load_data():
|
|
141 |
print("HF_DATASET backend not fully configured (check env vars and library install). Falling back to RAM for this session.")
|
142 |
STORAGE_BACKEND_CONFIG = "RAM"
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
posts = pd.DataFrame(columns=["post_id", "username", "content", "timestamp"])
|
147 |
-
if not isinstance(comments, pd.DataFrame) or "comment_id" not in comments.columns:
|
148 |
-
comments = pd.DataFrame(columns=["comment_id", "post_id", "username", "content", "timestamp"])
|
149 |
|
150 |
post_counter = int(posts['post_id'].max()) if not posts.empty else 0
|
151 |
comment_counter = int(comments['comment_id'].max()) if not comments.empty else 0
|
@@ -184,7 +180,7 @@ def api_create_post(auth_token, content):
|
|
184 |
handle_persistence_after_change()
|
185 |
return f"[Post API] Success: Post created with ID {post_counter}."
|
186 |
|
187 |
-
def api_create_comment(auth_token, post_id, content):
|
188 |
global comments_df, comment_counter
|
189 |
username = _get_user_from_token(auth_token)
|
190 |
if not username: return "[Comment API] Failed: Invalid auth token."
|
@@ -193,19 +189,46 @@ def api_create_comment(auth_token, post_id, content):
|
|
193 |
try: target_post_id = int(post_id)
|
194 |
except (ValueError, TypeError): return f"[Comment API] Failed: Post ID must be a number."
|
195 |
if target_post_id not in posts_df['post_id'].values: return f"[Comment API] Failed: Post with ID {post_id} not found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
comment_counter += 1
|
197 |
-
|
|
|
198 |
comments_df = pd.concat([comments_df, new_comment], ignore_index=True)
|
199 |
handle_persistence_after_change()
|
200 |
return f"[Comment API] Success: Comment created on post {post_id}."
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
def api_get_feed(search_query: str = None):
|
203 |
with db_lock:
|
204 |
current_posts, current_comments = posts_df.copy(), comments_df.copy()
|
205 |
if current_posts.empty: return pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])
|
206 |
display_posts = current_posts[current_posts['content'].str.contains(search_query, case=False, na=False)] if search_query and not search_query.isspace() else current_posts
|
207 |
sorted_posts = display_posts.sort_values(by="timestamp", ascending=False)
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
209 |
return pd.DataFrame(feed_data) if feed_data else pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])
|
210 |
|
211 |
# --- UI Helper Functions ---
|
@@ -218,17 +241,17 @@ def ui_manual_post(username, password, content):
|
|
218 |
result = api_create_post(auth_token, content)
|
219 |
return result, api_get_feed()
|
220 |
|
221 |
-
def ui_manual_comment(username, password, post_id, content):
|
222 |
if not username or not password:
|
223 |
return "Username and password are required.", api_get_feed()
|
224 |
auth_token = api_login(username, password)
|
225 |
if "Failed" in auth_token:
|
226 |
return "Login failed. Check credentials.", api_get_feed()
|
227 |
-
result = api_create_comment(auth_token, post_id, content)
|
228 |
return result, api_get_feed()
|
229 |
|
230 |
with gr.Blocks(theme=gr.themes.Soft(), title="Social App") as demo:
|
231 |
-
gr.Markdown("#
|
232 |
gr.Markdown(f"This app provides an API for iLearn agents to interact with. **Storage Backend: `{STORAGE_BACKEND_CONFIG}`**")
|
233 |
|
234 |
with gr.Tabs():
|
@@ -250,6 +273,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Social App") as demo:
|
|
250 |
comment_user = gr.Textbox(label="Username", value="admin")
|
251 |
comment_pass = gr.Textbox(label="Password", type="password", value="password")
|
252 |
comment_post_id = gr.Number(label="Target Post ID", precision=0)
|
|
|
253 |
comment_content = gr.Textbox(label="Comment Content", lines=2, placeholder="Add a comment...")
|
254 |
comment_button = gr.Button("Submit Comment", variant="primary")
|
255 |
with gr.Group():
|
@@ -269,19 +293,18 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Social App") as demo:
|
|
269 |
)
|
270 |
comment_button.click(
|
271 |
fn=ui_manual_comment,
|
272 |
-
inputs=[comment_user, comment_pass, comment_post_id, comment_content],
|
273 |
outputs=[manual_action_status, feed_df_display]
|
274 |
)
|
275 |
|
276 |
-
|
277 |
def timed_feed_refresh(interval):
|
278 |
-
global
|
279 |
-
if time.time() -
|
280 |
-
|
281 |
return api_get_feed()
|
282 |
return gr.update()
|
283 |
|
284 |
-
# A fast-ticking timer that calls our function. The function itself decides if it's time to refresh.
|
285 |
gr.Timer(1).tick(
|
286 |
fn=timed_feed_refresh,
|
287 |
inputs=[feed_refresh_interval_slider],
|
@@ -299,16 +322,12 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Social App") as demo:
|
|
299 |
|
300 |
demo.load(api_get_feed, None, feed_df_display)
|
301 |
|
302 |
-
# Hidden API interfaces for the agent
|
303 |
with gr.Column(visible=False if DEMO_MODE else True):
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
("get_feed", api_get_feed, ["text"], "dataframe")
|
310 |
-
]:
|
311 |
-
gr.Interface(func, inputs, outputs, api_name=name, allow_flagging="never")
|
312 |
|
313 |
if __name__ == "__main__":
|
314 |
print(f"Starting Social Media App server with {STORAGE_BACKEND_CONFIG} backend.")
|
|
|
8 |
import time
|
9 |
from dotenv import load_dotenv
|
10 |
|
11 |
+
DEMO_MODE = os.getenv("DEMO_MODE", "False").lower() == 'true'
|
12 |
# --- Load Environment & Configuration ---
|
13 |
load_dotenv()
|
14 |
try:
|
|
|
16 |
HF_DATASETS_AVAILABLE = True
|
17 |
except ImportError:
|
18 |
HF_DATASETS_AVAILABLE = False
|
19 |
+
Features, Value = None, None
|
20 |
|
21 |
+
STORAGE_BACKEND_CONFIG = os.getenv("STORAGE_BACKEND", "JSON").upper()
|
22 |
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO")
|
23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
HF_BACKUP_THRESHOLD = int(os.getenv("HF_BACKUP_THRESHOLD", 10))
|
|
|
33 |
def force_persist_data():
|
34 |
global dirty_operations_count
|
35 |
with db_lock:
|
36 |
+
storage_backend = STORAGE_BACKEND_CONFIG
|
37 |
if storage_backend == "RAM":
|
38 |
return True, "RAM backend. No persistence."
|
39 |
elif storage_backend == "SQLITE":
|
|
|
81 |
global STORAGE_BACKEND_CONFIG
|
82 |
storage_backend = STORAGE_BACKEND_CONFIG
|
83 |
with db_lock:
|
84 |
+
users, posts, comments = {"admin": "password"}, pd.DataFrame(columns=["post_id", "username", "content", "timestamp"]), pd.DataFrame(columns=["comment_id", "post_id", "username", "content", "timestamp", "reply_to_comment_id"])
|
|
|
85 |
|
86 |
if storage_backend == "SQLITE":
|
87 |
try:
|
|
|
89 |
cursor = conn.cursor()
|
90 |
cursor.execute("CREATE TABLE IF NOT EXISTS users (username TEXT PRIMARY KEY, password TEXT NOT NULL)")
|
91 |
cursor.execute("CREATE TABLE IF NOT EXISTS posts (post_id INTEGER PRIMARY KEY, username TEXT, content TEXT, timestamp TEXT)")
|
92 |
+
cursor.execute("CREATE TABLE IF NOT EXISTS comments (comment_id INTEGER PRIMARY KEY, post_id INTEGER, username TEXT, content TEXT, timestamp TEXT, reply_to_comment_id INTEGER)")
|
93 |
cursor.execute("INSERT OR IGNORE INTO users (username, password) VALUES (?, ?)", ("admin", "password"))
|
94 |
conn.commit()
|
95 |
users = dict(conn.execute("SELECT username, password FROM users").fetchall())
|
|
|
124 |
try:
|
125 |
user_features = Features({'username': Value('string'), 'password': Value('string')})
|
126 |
post_features = Features({'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string')})
|
127 |
+
comment_features = Features({'comment_id': Value('int64'), 'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string'), 'reply_to_comment_id': Value('int64')})
|
128 |
|
129 |
dataset_dict = DatasetDict({
|
130 |
'users': Dataset.from_pandas(pd.DataFrame(list(users.items()), columns=['username', 'password']), features=user_features),
|
|
|
140 |
print("HF_DATASET backend not fully configured (check env vars and library install). Falling back to RAM for this session.")
|
141 |
STORAGE_BACKEND_CONFIG = "RAM"
|
142 |
|
143 |
+
if "reply_to_comment_id" not in comments.columns:
|
144 |
+
comments["reply_to_comment_id"] = None
|
|
|
|
|
|
|
145 |
|
146 |
post_counter = int(posts['post_id'].max()) if not posts.empty else 0
|
147 |
comment_counter = int(comments['comment_id'].max()) if not comments.empty else 0
|
|
|
180 |
handle_persistence_after_change()
|
181 |
return f"[Post API] Success: Post created with ID {post_counter}."
|
182 |
|
183 |
+
def api_create_comment(auth_token, post_id, content, reply_to_comment_id=None):
|
184 |
global comments_df, comment_counter
|
185 |
username = _get_user_from_token(auth_token)
|
186 |
if not username: return "[Comment API] Failed: Invalid auth token."
|
|
|
189 |
try: target_post_id = int(post_id)
|
190 |
except (ValueError, TypeError): return f"[Comment API] Failed: Post ID must be a number."
|
191 |
if target_post_id not in posts_df['post_id'].values: return f"[Comment API] Failed: Post with ID {post_id} not found."
|
192 |
+
|
193 |
+
target_reply_id = None
|
194 |
+
if reply_to_comment_id is not None:
|
195 |
+
try: target_reply_id = int(reply_to_comment_id)
|
196 |
+
except (ValueError, TypeError): return "[Comment API] Failed: Reply ID must be a number."
|
197 |
+
if target_reply_id not in comments_df['comment_id'].values: return f"[Comment API] Failed: Comment to reply to (ID {target_reply_id}) not found."
|
198 |
+
|
199 |
comment_counter += 1
|
200 |
+
new_comment_data = {"comment_id": comment_counter, "post_id": target_post_id, "username": username, "content": content, "timestamp": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"), "reply_to_comment_id": target_reply_id}
|
201 |
+
new_comment = pd.DataFrame([new_comment_data])
|
202 |
comments_df = pd.concat([comments_df, new_comment], ignore_index=True)
|
203 |
handle_persistence_after_change()
|
204 |
return f"[Comment API] Success: Comment created on post {post_id}."
|
205 |
|
206 |
+
def _format_comments_threaded(post_id, all_comments_df, parent_id=None, depth=0):
|
207 |
+
thread = []
|
208 |
+
# Match NaN correctly for top-level comments
|
209 |
+
if parent_id is None:
|
210 |
+
children = all_comments_df[(all_comments_df['post_id'] == post_id) & (all_comments_df['reply_to_comment_id'].isna())]
|
211 |
+
else:
|
212 |
+
children = all_comments_df[all_comments_df['reply_to_comment_id'] == parent_id]
|
213 |
+
|
214 |
+
for _, comment in children.iterrows():
|
215 |
+
indent = " " * depth
|
216 |
+
thread.append(f"{indent} - (ID: {comment['comment_id']}) @{comment['username']}: {comment['content']}")
|
217 |
+
thread.extend(_format_comments_threaded(post_id, all_comments_df, parent_id=comment['comment_id'], depth=depth + 1))
|
218 |
+
return thread
|
219 |
+
|
220 |
def api_get_feed(search_query: str = None):
|
221 |
with db_lock:
|
222 |
current_posts, current_comments = posts_df.copy(), comments_df.copy()
|
223 |
if current_posts.empty: return pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])
|
224 |
display_posts = current_posts[current_posts['content'].str.contains(search_query, case=False, na=False)] if search_query and not search_query.isspace() else current_posts
|
225 |
sorted_posts = display_posts.sort_values(by="timestamp", ascending=False)
|
226 |
+
|
227 |
+
feed_data = []
|
228 |
+
for _, post in sorted_posts.iterrows():
|
229 |
+
threaded_comments = _format_comments_threaded(post['post_id'], current_comments)
|
230 |
+
feed_data.append({"post_id": post['post_id'], "username": post['username'], "content": post['content'], "timestamp": post['timestamp'], "comments": "\n".join(threaded_comments)})
|
231 |
+
|
232 |
return pd.DataFrame(feed_data) if feed_data else pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])
|
233 |
|
234 |
# --- UI Helper Functions ---
|
|
|
241 |
result = api_create_post(auth_token, content)
|
242 |
return result, api_get_feed()
|
243 |
|
244 |
+
def ui_manual_comment(username, password, post_id, reply_id, content):
|
245 |
if not username or not password:
|
246 |
return "Username and password are required.", api_get_feed()
|
247 |
auth_token = api_login(username, password)
|
248 |
if "Failed" in auth_token:
|
249 |
return "Login failed. Check credentials.", api_get_feed()
|
250 |
+
result = api_create_comment(auth_token, post_id, content, reply_to_comment_id=reply_id)
|
251 |
return result, api_get_feed()
|
252 |
|
253 |
with gr.Blocks(theme=gr.themes.Soft(), title="Social App") as demo:
|
254 |
+
gr.Markdown("# Dummy Social Media Platform")
|
255 |
gr.Markdown(f"This app provides an API for iLearn agents to interact with. **Storage Backend: `{STORAGE_BACKEND_CONFIG}`**")
|
256 |
|
257 |
with gr.Tabs():
|
|
|
273 |
comment_user = gr.Textbox(label="Username", value="admin")
|
274 |
comment_pass = gr.Textbox(label="Password", type="password", value="password")
|
275 |
comment_post_id = gr.Number(label="Target Post ID", precision=0)
|
276 |
+
comment_reply_id = gr.Number(label="Reply to Comment ID (optional)", precision=0)
|
277 |
comment_content = gr.Textbox(label="Comment Content", lines=2, placeholder="Add a comment...")
|
278 |
comment_button = gr.Button("Submit Comment", variant="primary")
|
279 |
with gr.Group():
|
|
|
293 |
)
|
294 |
comment_button.click(
|
295 |
fn=ui_manual_comment,
|
296 |
+
inputs=[comment_user, comment_pass, comment_post_id, comment_reply_id, comment_content],
|
297 |
outputs=[manual_action_status, feed_df_display]
|
298 |
)
|
299 |
|
300 |
+
last_refresh_time = time.time()
|
301 |
def timed_feed_refresh(interval):
|
302 |
+
global last_refresh_time
|
303 |
+
if time.time() - last_refresh_time > interval:
|
304 |
+
last_refresh_time = time.time()
|
305 |
return api_get_feed()
|
306 |
return gr.update()
|
307 |
|
|
|
308 |
gr.Timer(1).tick(
|
309 |
fn=timed_feed_refresh,
|
310 |
inputs=[feed_refresh_interval_slider],
|
|
|
322 |
|
323 |
demo.load(api_get_feed, None, feed_df_display)
|
324 |
|
|
|
325 |
with gr.Column(visible=False if DEMO_MODE else True):
|
326 |
+
gr.Interface(api_register, ["text", gr.Textbox(type="password")], "text", api_name="register", allow_flagging="never")
|
327 |
+
gr.Interface(api_login, ["text", gr.Textbox(type="password")], "text", api_name="login", allow_flagging="never")
|
328 |
+
gr.Interface(api_create_post, ["text", "text"], "text", api_name="create_post", allow_flagging="never")
|
329 |
+
gr.Interface(api_create_comment, ["text", "number", "text", "number"], "text", api_name="create_comment", allow_flagging="never")
|
330 |
+
gr.Interface(api_get_feed, ["text"], "dataframe", api_name="get_feed", allow_flagging="never")
|
|
|
|
|
|
|
331 |
|
332 |
if __name__ == "__main__":
|
333 |
print(f"Starting Social Media App server with {STORAGE_BACKEND_CONFIG} backend.")
|