Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
from flask import Flask, render_template, request
|
4 |
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
|
5 |
import logging
|
6 |
import time
|
@@ -24,28 +24,37 @@ def load_feeds_in_background():
|
|
24 |
|
25 |
@app.route('/')
|
26 |
def index():
|
27 |
-
# Show existing articles immediately, even if empty
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Start loading new feeds in the background
|
51 |
subprocess.Popen(["python", "rss_processor.py", "load_feeds"])
|
@@ -57,14 +66,49 @@ def index():
|
|
57 |
categorized_articles[cat] = []
|
58 |
categorized_articles[cat].append(article)
|
59 |
|
60 |
-
return render_template("index.html", categorized_articles=categorized_articles, loading_new_feeds=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
@app.route('/check_feeds', methods=['GET'])
|
63 |
def check_feeds():
|
64 |
try:
|
65 |
# Check if vector DB has new or updated documents
|
66 |
-
|
67 |
-
if
|
68 |
logger.info("Feeds loaded successfully in vector DB")
|
69 |
return jsonify({"status": "loaded"})
|
70 |
return jsonify({"status": "loading"}), 202
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
+
from flask import Flask, render_template, request
|
4 |
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
|
5 |
import logging
|
6 |
import time
|
|
|
24 |
|
25 |
@app.route('/')
|
26 |
def index():
|
27 |
+
# Show all existing articles immediately, even if empty
|
28 |
+
try:
|
29 |
+
# Get all documents from Chroma DB
|
30 |
+
all_docs = vector_db.get(include=['documents', 'metadatas'])
|
31 |
+
stored_docs = [
|
32 |
+
Document(page_content=doc['documents'], metadata=doc['metadatas'])
|
33 |
+
for doc in all_docs['documents']
|
34 |
+
]
|
35 |
+
logger.info(f"Found {len(stored_docs)} documents in vector DB")
|
36 |
+
# Use a set to ensure unique articles by title, link, and full description hash
|
37 |
+
unique_articles = {}
|
38 |
+
for doc in stored_docs:
|
39 |
+
title = doc.metadata["title"]
|
40 |
+
link = doc.metadata["link"]
|
41 |
+
description = doc.metadata["original_description"]
|
42 |
+
desc_hash = hashlib.md5(description.encode()).hexdigest()
|
43 |
+
key = f"{title}|{link}|{desc_hash}"
|
44 |
+
if key not in unique_articles:
|
45 |
+
unique_articles[key] = {
|
46 |
+
"title": title,
|
47 |
+
"link": link,
|
48 |
+
"description": description,
|
49 |
+
"category": doc.metadata["category"],
|
50 |
+
"published": doc.metadata["published"],
|
51 |
+
"image": doc.metadata.get("image", "svg"),
|
52 |
+
}
|
53 |
+
enriched_articles = list(unique_articles.values())
|
54 |
+
logger.info(f"Enriched {len(enriched_articles)} unique articles for display")
|
55 |
+
except Exception as e:
|
56 |
+
logger.error(f"Error retrieving documents from vector DB: {e}")
|
57 |
+
enriched_articles = [] # Fallback if DB is empty or inaccessible
|
58 |
|
59 |
# Start loading new feeds in the background
|
60 |
subprocess.Popen(["python", "rss_processor.py", "load_feeds"])
|
|
|
66 |
categorized_articles[cat] = []
|
67 |
categorized_articles[cat].append(article)
|
68 |
|
69 |
+
return render_template("index.html", categorized_articles=categorized_articles, loading_new_feeds=True, has_articles=bool(enriched_articles))
|
70 |
+
|
71 |
+
@app.route('/search', methods=['POST'])
|
72 |
+
def search():
|
73 |
+
query = request.form.get('search')
|
74 |
+
if query:
|
75 |
+
logger.info(f"Processing search query: {query}")
|
76 |
+
results = vector_db.similarity_search(query, k=10)
|
77 |
+
unique_search_articles = {}
|
78 |
+
for doc in results:
|
79 |
+
title = doc.metadata["title"]
|
80 |
+
link = doc.metadata["link"]
|
81 |
+
description = doc.metadata["original_description"]
|
82 |
+
desc_hash = hashlib.md5(description.encode()).hexdigest()
|
83 |
+
key = f"{title}|{link}|{desc_hash}"
|
84 |
+
if key not in unique_search_articles:
|
85 |
+
unique_search_articles[key] = {
|
86 |
+
"title": title,
|
87 |
+
"link": link,
|
88 |
+
"description": description,
|
89 |
+
"category": doc.metadata["category"],
|
90 |
+
"published": doc.metadata["published"],
|
91 |
+
"image": doc.metadata.get("image", "svg"),
|
92 |
+
}
|
93 |
+
enriched_articles = list(unique_search_articles.values())
|
94 |
+
logger.info(f"Search returned {len(enriched_articles)} unique results")
|
95 |
+
|
96 |
+
categorized_articles = {}
|
97 |
+
for article in enriched_articles:
|
98 |
+
cat = article["category"]
|
99 |
+
if cat not in categorized_articles:
|
100 |
+
categorized_articles[cat] = []
|
101 |
+
categorized_articles[cat].append(article)
|
102 |
+
|
103 |
+
return render_template("index.html", categorized_articles=categorized_articles, loading_new_feeds=True, has_articles=bool(enriched_articles))
|
104 |
+
return render_template("index.html", categorized_articles={}, loading_new_feeds=True, has_articles=False)
|
105 |
|
106 |
@app.route('/check_feeds', methods=['GET'])
|
107 |
def check_feeds():
|
108 |
try:
|
109 |
# Check if vector DB has new or updated documents
|
110 |
+
all_docs = vector_db.get(include=['documents', 'metadatas'])
|
111 |
+
if all_docs['documents']:
|
112 |
logger.info("Feeds loaded successfully in vector DB")
|
113 |
return jsonify({"status": "loaded"})
|
114 |
return jsonify({"status": "loading"}), 202
|