Spaces:
Runtime error
Runtime error
from transformers import AutoProcessor, Gemma3nForConditionalGeneration | |
from PIL import Image | |
import requests | |
import torch | |
model_id = "google/gemma-3n-e4b-it" | |
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,).eval() | |
processor = AutoProcessor.from_pretrained(model_id) | |
messages = [ | |
{ | |
"role": "system", | |
"content": [{"type": "text", "text": "You are a helpful assistant."}] | |
}, | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, | |
{"type": "text", "text": "Describe this image in detail."} | |
] | |
} | |
] | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(model.device) | |
input_len = inputs["input_ids"].shape[-1] | |
with torch.inference_mode(): | |
generation = model.generate(**inputs, max_new_tokens=100, do_sample=False) | |
generation = generation[0][input_len:] | |
decoded = processor.decode(generation, skip_special_tokens=True) | |
print(decoded) | |
# **Overall Impression:** The image is a close-up shot of a vibrant garden scene, | |
# focusing on a cluster of pink cosmos flowers and a busy bumblebee. | |
# It has a slightly soft, natural feel, likely captured in daylight. | |