Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,41 @@
|
|
| 1 |
import os
|
| 2 |
import threading
|
| 3 |
from flask import Flask, render_template, request, jsonify
|
| 4 |
-
from rss_processor import fetch_rss_feeds, process_and_store_articles, download_from_hf_hub, upload_to_hf_hub, clean_text
|
| 5 |
import logging
|
| 6 |
import time
|
| 7 |
from datetime import datetime
|
| 8 |
import hashlib
|
| 9 |
-
import glob
|
| 10 |
from langchain.vectorstores import Chroma
|
| 11 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 12 |
|
| 13 |
app = Flask(__name__)
|
| 14 |
|
| 15 |
-
# Setup logging
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
loading_complete = True # Start as True to allow initial rendering
|
| 21 |
last_update_time = time.time()
|
| 22 |
-
last_data_hash = None
|
| 23 |
|
| 24 |
def get_embedding_model():
|
| 25 |
-
"""Returns a singleton instance of the embedding model to avoid reloading."""
|
| 26 |
if not hasattr(get_embedding_model, "model"):
|
| 27 |
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 28 |
return get_embedding_model.model
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def load_feeds_in_background():
|
| 31 |
global loading_complete, last_update_time
|
| 32 |
try:
|
|
@@ -42,196 +51,117 @@ def load_feeds_in_background():
|
|
| 42 |
finally:
|
| 43 |
loading_complete = True
|
| 44 |
|
| 45 |
-
def
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
for db_path in glob.glob("chroma_db_*"):
|
| 52 |
-
if not os.path.isdir(db_path):
|
| 53 |
-
continue
|
| 54 |
-
try:
|
| 55 |
-
temp_vector_db = Chroma(
|
| 56 |
-
persist_directory=db_path,
|
| 57 |
-
embedding_function=embedding_function,
|
| 58 |
-
collection_name="news_articles"
|
| 59 |
-
)
|
| 60 |
-
# Skip empty databases
|
| 61 |
-
if temp_vector_db._collection.count() == 0:
|
| 62 |
-
continue
|
| 63 |
-
|
| 64 |
-
db_data = temp_vector_db.get(include=['documents', 'metadatas'])
|
| 65 |
-
if db_data.get('documents') and db_data.get('metadatas'):
|
| 66 |
-
for doc, meta in zip(db_data['documents'], db_data['metadatas']):
|
| 67 |
-
# Use a more robust unique identifier
|
| 68 |
-
doc_id = f"{meta.get('title', 'No Title')}|{meta.get('link', '')}|{meta.get('published', 'Unknown Date')}"
|
| 69 |
-
if doc_id not in seen_ids:
|
| 70 |
-
seen_ids.add(doc_id)
|
| 71 |
-
all_docs['documents'].append(doc)
|
| 72 |
-
all_docs['metadatas'].append(meta)
|
| 73 |
-
except Exception as e:
|
| 74 |
-
logger.error(f"Error loading DB {db_path}: {e}")
|
| 75 |
-
|
| 76 |
-
return all_docs
|
| 77 |
|
| 78 |
def compute_data_hash(categorized_articles):
|
| 79 |
-
|
| 80 |
-
if not categorized_articles:
|
| 81 |
-
return ""
|
| 82 |
-
# Create a sorted string representation of the articles for consistent hashing
|
| 83 |
data_str = ""
|
| 84 |
for cat, articles in sorted(categorized_articles.items()):
|
| 85 |
for article in sorted(articles, key=lambda x: x["published"]):
|
| 86 |
data_str += f"{cat}|{article['title']}|{article['link']}|{article['published']}|"
|
| 87 |
return hashlib.sha256(data_str.encode('utf-8')).hexdigest()
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
@app.route('/')
|
| 90 |
def index():
|
| 91 |
global loading_complete, last_update_time, last_data_hash
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
logger.info("No Chroma DBs found, downloading from Hugging Face Hub...")
|
| 96 |
download_from_hf_hub()
|
| 97 |
|
| 98 |
-
# Start background RSS feed update
|
| 99 |
loading_complete = False
|
| 100 |
threading.Thread(target=load_feeds_in_background, daemon=True).start()
|
| 101 |
|
| 102 |
-
# Load existing data immediately
|
| 103 |
try:
|
| 104 |
-
all_docs =
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
if not all_docs.get('metadatas'):
|
| 108 |
-
logger.info("No articles in any DB yet")
|
| 109 |
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
|
| 110 |
|
| 111 |
-
|
| 112 |
-
enriched_articles = []
|
| 113 |
-
seen_keys = set()
|
| 114 |
-
for doc, meta in zip(all_docs['documents'], all_docs['metadatas']):
|
| 115 |
-
if not meta:
|
| 116 |
-
continue
|
| 117 |
-
title = meta.get("title", "No Title")
|
| 118 |
-
link = meta.get("link", "")
|
| 119 |
-
description = meta.get("original_description", "No Description")
|
| 120 |
-
published = meta.get("published", "Unknown Date").strip()
|
| 121 |
-
|
| 122 |
-
title = clean_text(title)
|
| 123 |
-
link = clean_text(link)
|
| 124 |
-
description = clean_text(description)
|
| 125 |
-
|
| 126 |
-
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
| 127 |
-
key = f"{title}|{link}|{published}|{description_hash}"
|
| 128 |
-
if key not in seen_keys:
|
| 129 |
-
seen_keys.add(key)
|
| 130 |
-
try:
|
| 131 |
-
published = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat() if "Unknown" not in published else published
|
| 132 |
-
except (ValueError, TypeError):
|
| 133 |
-
published = "1970-01-01T00:00:00"
|
| 134 |
-
enriched_articles.append({
|
| 135 |
-
"title": title,
|
| 136 |
-
"link": link,
|
| 137 |
-
"description": description,
|
| 138 |
-
"category": meta.get("category", "Uncategorized"),
|
| 139 |
-
"published": published,
|
| 140 |
-
"image": meta.get("image", "svg"),
|
| 141 |
-
})
|
| 142 |
-
|
| 143 |
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
|
| 144 |
-
|
| 145 |
categorized_articles = {}
|
| 146 |
for article in enriched_articles:
|
| 147 |
cat = article["category"]
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
categorized_articles = dict(sorted(categorized_articles.items(), key=lambda x: x[0].lower()))
|
| 153 |
|
| 154 |
for cat in categorized_articles:
|
| 155 |
-
categorized_articles[cat] =
|
| 156 |
-
if len(categorized_articles[cat]) >= 2:
|
| 157 |
-
logger.debug(f"Category {cat} top 2: {categorized_articles[cat][0]['title']} | {categorized_articles[cat][1]['title']}")
|
| 158 |
|
| 159 |
-
# Compute initial data hash
|
| 160 |
last_data_hash = compute_data_hash(categorized_articles)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
return render_template("index.html",
|
| 164 |
-
categorized_articles=categorized_articles,
|
| 165 |
-
has_articles=True,
|
| 166 |
-
loading=True)
|
| 167 |
except Exception as e:
|
| 168 |
-
logger.error(f"Error retrieving articles at startup: {e}")
|
| 169 |
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
|
| 170 |
|
| 171 |
@app.route('/search', methods=['POST'])
|
| 172 |
def search():
|
| 173 |
query = request.form.get('search')
|
| 174 |
if not query:
|
| 175 |
-
logger.info("Empty search query received")
|
| 176 |
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
|
| 177 |
|
| 178 |
try:
|
| 179 |
logger.info(f"Performing semantic search for: '{query}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
embedding_function = get_embedding_model()
|
| 182 |
enriched_articles = []
|
| 183 |
seen_keys = set()
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
if not db_paths:
|
| 187 |
-
logger.warning("No Chroma DBs found for search.")
|
| 188 |
-
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
|
| 189 |
-
|
| 190 |
-
all_search_results = []
|
| 191 |
-
for db_path in db_paths:
|
| 192 |
-
if not os.path.isdir(db_path): continue
|
| 193 |
-
try:
|
| 194 |
-
vector_db = Chroma(
|
| 195 |
-
persist_directory=db_path,
|
| 196 |
-
embedding_function=embedding_function,
|
| 197 |
-
collection_name="news_articles"
|
| 198 |
-
)
|
| 199 |
-
if vector_db._collection.count() > 0:
|
| 200 |
-
results = vector_db.similarity_search_with_relevance_scores(query, k=20)
|
| 201 |
-
all_search_results.extend(results)
|
| 202 |
-
except Exception as e:
|
| 203 |
-
logger.error(f"Error searching in DB {db_path}: {e}")
|
| 204 |
-
|
| 205 |
-
# Sort all results by relevance score (higher is better)
|
| 206 |
-
all_search_results.sort(key=lambda x: x[1], reverse=True)
|
| 207 |
-
|
| 208 |
-
# Process and deduplicate top results
|
| 209 |
-
for doc, score in all_search_results:
|
| 210 |
meta = doc.metadata
|
| 211 |
-
title =
|
| 212 |
-
link =
|
| 213 |
-
|
| 214 |
-
published = meta.get("published", "Unknown Date").strip()
|
| 215 |
-
|
| 216 |
-
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
| 217 |
-
key = f"{title}|{link}|{published}|{description_hash}"
|
| 218 |
-
|
| 219 |
if key not in seen_keys:
|
| 220 |
seen_keys.add(key)
|
| 221 |
enriched_articles.append({
|
| 222 |
-
"title":
|
| 223 |
-
"link":
|
| 224 |
"description": meta.get("original_description", "No Description"),
|
| 225 |
"category": meta.get("category", "Uncategorized"),
|
| 226 |
-
"published": published,
|
| 227 |
"image": meta.get("image", "svg"),
|
| 228 |
})
|
| 229 |
|
| 230 |
-
logger.info(f"Found {len(enriched_articles)} unique articles from semantic search.")
|
| 231 |
-
if not enriched_articles:
|
| 232 |
-
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
|
| 233 |
-
|
| 234 |
-
# Categorize the articles
|
| 235 |
categorized_articles = {}
|
| 236 |
for article in enriched_articles:
|
| 237 |
cat = article["category"]
|
|
@@ -246,141 +176,58 @@ def search():
|
|
| 246 |
logger.error(f"Semantic search error: {e}", exc_info=True)
|
| 247 |
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False}), 500
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
@app.route('/check_loading')
|
| 251 |
def check_loading():
|
| 252 |
global loading_complete, last_update_time
|
| 253 |
-
if loading_complete:
|
| 254 |
-
return jsonify({"status": "complete", "last_update": last_update_time})
|
| 255 |
-
return jsonify({"status": "loading"}), 202
|
| 256 |
|
| 257 |
@app.route('/get_updates')
|
| 258 |
def get_updates():
|
| 259 |
global last_update_time, last_data_hash
|
| 260 |
try:
|
| 261 |
-
all_docs =
|
| 262 |
-
if not all_docs
|
| 263 |
-
return jsonify({"articles":
|
| 264 |
-
|
| 265 |
-
enriched_articles =
|
| 266 |
-
seen_keys = set()
|
| 267 |
-
for doc, meta in zip(all_docs['documents'], all_docs['metadatas']):
|
| 268 |
-
if not meta:
|
| 269 |
-
continue
|
| 270 |
-
title = meta.get("title", "No Title")
|
| 271 |
-
link = meta.get("link", "")
|
| 272 |
-
description = meta.get("original_description", "No Description")
|
| 273 |
-
published = meta.get("published", "Unknown Date").strip()
|
| 274 |
-
|
| 275 |
-
title = clean_text(title)
|
| 276 |
-
link = clean_text(link)
|
| 277 |
-
description = clean_text(description)
|
| 278 |
-
|
| 279 |
-
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
| 280 |
-
key = f"{title}|{link}|{published}|{description_hash}"
|
| 281 |
-
if key not in seen_keys:
|
| 282 |
-
seen_keys.add(key)
|
| 283 |
-
try:
|
| 284 |
-
published = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat() if "Unknown" not in published else published
|
| 285 |
-
except (ValueError, TypeError):
|
| 286 |
-
published = "1970-01-01T00:00:00"
|
| 287 |
-
enriched_articles.append({
|
| 288 |
-
"title": title,
|
| 289 |
-
"link": link,
|
| 290 |
-
"description": description,
|
| 291 |
-
"category": meta.get("category", "Uncategorized"),
|
| 292 |
-
"published": published,
|
| 293 |
-
"image": meta.get("image", "svg"),
|
| 294 |
-
})
|
| 295 |
-
|
| 296 |
-
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
|
| 297 |
categorized_articles = {}
|
| 298 |
for article in enriched_articles:
|
| 299 |
cat = article["category"]
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
key = f"{article['title']}|{article['link']}|{article['published']}"
|
| 303 |
-
if key not in [f"{a['title']}|{a['link']}|{a['published']}" for a in categorized_articles[cat]]:
|
| 304 |
-
categorized_articles[cat].append(article)
|
| 305 |
-
|
| 306 |
for cat in categorized_articles:
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
for article in sorted(categorized_articles[cat], key=lambda x: x["published"], reverse=True):
|
| 310 |
-
key = f"{clean_text(article['title'])}|{clean_text(article['link'])}|{article['published']}"
|
| 311 |
-
if key not in seen_cat_keys:
|
| 312 |
-
seen_cat_keys.add(key)
|
| 313 |
-
unique_articles.append(article)
|
| 314 |
-
categorized_articles[cat] = unique_articles[:10]
|
| 315 |
|
| 316 |
-
# Compute hash of new data
|
| 317 |
current_data_hash = compute_data_hash(categorized_articles)
|
| 318 |
-
|
| 319 |
-
# Compare with last data hash to determine if there are updates
|
| 320 |
has_updates = last_data_hash != current_data_hash
|
|
|
|
| 321 |
if has_updates:
|
| 322 |
logger.info("New RSS data detected, sending updates to frontend")
|
| 323 |
last_data_hash = current_data_hash
|
| 324 |
-
return jsonify({
|
| 325 |
-
"articles": categorized_articles,
|
| 326 |
-
"last_update": last_update_time,
|
| 327 |
-
"has_updates": True
|
| 328 |
-
})
|
| 329 |
else:
|
| 330 |
-
|
| 331 |
-
return jsonify({
|
| 332 |
-
"articles": {},
|
| 333 |
-
"last_update": last_update_time,
|
| 334 |
-
"has_updates": False
|
| 335 |
-
})
|
| 336 |
except Exception as e:
|
| 337 |
logger.error(f"Error fetching updates: {e}")
|
| 338 |
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False}), 500
|
| 339 |
|
| 340 |
-
@app.route('/get_all_articles/<category>')
|
| 341 |
-
def get_all_articles(category):
|
| 342 |
-
try:
|
| 343 |
-
all_docs = get_all_docs_from_dbs()
|
| 344 |
-
if not all_docs.get('metadatas'):
|
| 345 |
-
return jsonify({"articles": [], "category": category})
|
| 346 |
-
|
| 347 |
-
enriched_articles = []
|
| 348 |
-
seen_keys = set()
|
| 349 |
-
for doc, meta in zip(all_docs['documents'], all_docs['metadatas']):
|
| 350 |
-
if not meta or meta.get("category") != category:
|
| 351 |
-
continue
|
| 352 |
-
title = meta.get("title", "No Title")
|
| 353 |
-
link = meta.get("link", "")
|
| 354 |
-
description = meta.get("original_description", "No Description")
|
| 355 |
-
published = meta.get("published", "Unknown Date").strip()
|
| 356 |
-
|
| 357 |
-
title = clean_text(title)
|
| 358 |
-
link = clean_text(link)
|
| 359 |
-
description = clean_text(description)
|
| 360 |
-
|
| 361 |
-
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
|
| 362 |
-
key = f"{title}|{link}|{published}|{description_hash}"
|
| 363 |
-
if key not in seen_keys:
|
| 364 |
-
seen_keys.add(key)
|
| 365 |
-
try:
|
| 366 |
-
published = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat() if "Unknown" not in published else published
|
| 367 |
-
except (ValueError, TypeError):
|
| 368 |
-
published = "1970-01-01T00:00:00"
|
| 369 |
-
enriched_articles.append({
|
| 370 |
-
"title": title,
|
| 371 |
-
"link": link,
|
| 372 |
-
"description": description,
|
| 373 |
-
"category": meta.get("category", "Uncategorized"),
|
| 374 |
-
"published": published,
|
| 375 |
-
"image": meta.get("image", "svg"),
|
| 376 |
-
})
|
| 377 |
-
|
| 378 |
-
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
|
| 379 |
-
return jsonify({"articles": enriched_articles, "category": category})
|
| 380 |
-
except Exception as e:
|
| 381 |
-
logger.error(f"Error fetching all articles for category {category}: {e}")
|
| 382 |
-
return jsonify({"articles": [], "category": category}), 500
|
| 383 |
-
|
| 384 |
@app.route('/card')
|
| 385 |
def card_load():
|
| 386 |
return render_template("card.html")
|
|
|
|
| 1 |
import os
|
| 2 |
import threading
|
| 3 |
from flask import Flask, render_template, request, jsonify
|
| 4 |
+
from rss_processor import fetch_rss_feeds, process_and_store_articles, download_from_hf_hub, upload_to_hf_hub, clean_text, LOCAL_DB_DIR
|
| 5 |
import logging
|
| 6 |
import time
|
| 7 |
from datetime import datetime
|
| 8 |
import hashlib
|
|
|
|
| 9 |
from langchain.vectorstores import Chroma
|
| 10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 11 |
|
| 12 |
app = Flask(__name__)
|
| 13 |
|
|
|
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
+
loading_complete = True
|
|
|
|
| 18 |
last_update_time = time.time()
|
| 19 |
+
last_data_hash = None
|
| 20 |
|
| 21 |
def get_embedding_model():
|
|
|
|
| 22 |
if not hasattr(get_embedding_model, "model"):
|
| 23 |
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 24 |
return get_embedding_model.model
|
| 25 |
|
| 26 |
+
def get_vector_db():
|
| 27 |
+
if not os.path.exists(LOCAL_DB_DIR):
|
| 28 |
+
return None
|
| 29 |
+
try:
|
| 30 |
+
return Chroma(
|
| 31 |
+
persist_directory=LOCAL_DB_DIR,
|
| 32 |
+
embedding_function=get_embedding_model(),
|
| 33 |
+
collection_name="news_articles"
|
| 34 |
+
)
|
| 35 |
+
except Exception as e:
|
| 36 |
+
logger.error(f"Failed to load vector DB: {e}")
|
| 37 |
+
return None
|
| 38 |
+
|
| 39 |
def load_feeds_in_background():
|
| 40 |
global loading_complete, last_update_time
|
| 41 |
try:
|
|
|
|
| 51 |
finally:
|
| 52 |
loading_complete = True
|
| 53 |
|
| 54 |
+
def get_all_docs_from_db():
|
| 55 |
+
vector_db = get_vector_db()
|
| 56 |
+
if not vector_db or vector_db._collection.count() == 0:
|
| 57 |
+
return {'documents': [], 'metadatas': []}
|
| 58 |
+
return vector_db.get(include=['documents', 'metadatas'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def compute_data_hash(categorized_articles):
|
| 61 |
+
if not categorized_articles: return ""
|
|
|
|
|
|
|
|
|
|
| 62 |
data_str = ""
|
| 63 |
for cat, articles in sorted(categorized_articles.items()):
|
| 64 |
for article in sorted(articles, key=lambda x: x["published"]):
|
| 65 |
data_str += f"{cat}|{article['title']}|{article['link']}|{article['published']}|"
|
| 66 |
return hashlib.sha256(data_str.encode('utf-8')).hexdigest()
|
| 67 |
|
| 68 |
+
def process_docs_into_articles(docs_data):
|
| 69 |
+
enriched_articles = []
|
| 70 |
+
seen_keys = set()
|
| 71 |
+
for doc, meta in zip(docs_data['documents'], docs_data['metadatas']):
|
| 72 |
+
if not meta: continue
|
| 73 |
+
title = meta.get("title", "No Title")
|
| 74 |
+
link = meta.get("link", "")
|
| 75 |
+
description = meta.get("original_description", "No Description")
|
| 76 |
+
published = meta.get("published", "Unknown Date").strip()
|
| 77 |
+
|
| 78 |
+
key = f"{title}|{link}|{published}"
|
| 79 |
+
if key not in seen_keys:
|
| 80 |
+
seen_keys.add(key)
|
| 81 |
+
try:
|
| 82 |
+
published_iso = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat()
|
| 83 |
+
except (ValueError, TypeError):
|
| 84 |
+
published_iso = "1970-01-01T00:00:00"
|
| 85 |
+
|
| 86 |
+
enriched_articles.append({
|
| 87 |
+
"title": title,
|
| 88 |
+
"link": link,
|
| 89 |
+
"description": description,
|
| 90 |
+
"category": meta.get("category", "Uncategorized"),
|
| 91 |
+
"published": published_iso,
|
| 92 |
+
"image": meta.get("image", "svg"),
|
| 93 |
+
})
|
| 94 |
+
return enriched_articles
|
| 95 |
+
|
| 96 |
@app.route('/')
|
| 97 |
def index():
|
| 98 |
global loading_complete, last_update_time, last_data_hash
|
| 99 |
|
| 100 |
+
if not os.path.exists(LOCAL_DB_DIR):
|
| 101 |
+
logger.info(f"No Chroma DB found at '{LOCAL_DB_DIR}', downloading from Hugging Face Hub...")
|
|
|
|
| 102 |
download_from_hf_hub()
|
| 103 |
|
|
|
|
| 104 |
loading_complete = False
|
| 105 |
threading.Thread(target=load_feeds_in_background, daemon=True).start()
|
| 106 |
|
|
|
|
| 107 |
try:
|
| 108 |
+
all_docs = get_all_docs_from_db()
|
| 109 |
+
if not all_docs['metadatas']:
|
| 110 |
+
logger.info("No articles in the DB yet")
|
|
|
|
|
|
|
| 111 |
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
|
| 112 |
|
| 113 |
+
enriched_articles = process_docs_into_articles(all_docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
|
| 115 |
+
|
| 116 |
categorized_articles = {}
|
| 117 |
for article in enriched_articles:
|
| 118 |
cat = article["category"]
|
| 119 |
+
categorized_articles.setdefault(cat, []).append(article)
|
| 120 |
+
|
| 121 |
+
categorized_articles = dict(sorted(categorized_articles.items()))
|
|
|
|
|
|
|
| 122 |
|
| 123 |
for cat in categorized_articles:
|
| 124 |
+
categorized_articles[cat] = categorized_articles[cat][:10]
|
|
|
|
|
|
|
| 125 |
|
|
|
|
| 126 |
last_data_hash = compute_data_hash(categorized_articles)
|
| 127 |
+
|
| 128 |
+
return render_template("index.html", categorized_articles=categorized_articles, has_articles=True, loading=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
except Exception as e:
|
| 130 |
+
logger.error(f"Error retrieving articles at startup: {e}", exc_info=True)
|
| 131 |
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
|
| 132 |
|
| 133 |
@app.route('/search', methods=['POST'])
|
| 134 |
def search():
|
| 135 |
query = request.form.get('search')
|
| 136 |
if not query:
|
|
|
|
| 137 |
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
|
| 138 |
|
| 139 |
try:
|
| 140 |
logger.info(f"Performing semantic search for: '{query}'")
|
| 141 |
+
vector_db = get_vector_db()
|
| 142 |
+
if not vector_db:
|
| 143 |
+
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
|
| 144 |
+
|
| 145 |
+
results = vector_db.similarity_search_with_relevance_scores(query, k=50)
|
| 146 |
|
|
|
|
| 147 |
enriched_articles = []
|
| 148 |
seen_keys = set()
|
| 149 |
+
for doc, score in results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
meta = doc.metadata
|
| 151 |
+
title = meta.get("title", "No Title")
|
| 152 |
+
link = meta.get("link", "")
|
| 153 |
+
key = f"{title}|{link}|{meta.get('published', '')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
if key not in seen_keys:
|
| 155 |
seen_keys.add(key)
|
| 156 |
enriched_articles.append({
|
| 157 |
+
"title": title,
|
| 158 |
+
"link": link,
|
| 159 |
"description": meta.get("original_description", "No Description"),
|
| 160 |
"category": meta.get("category", "Uncategorized"),
|
| 161 |
+
"published": meta.get("published", "Unknown Date"),
|
| 162 |
"image": meta.get("image", "svg"),
|
| 163 |
})
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
categorized_articles = {}
|
| 166 |
for article in enriched_articles:
|
| 167 |
cat = article["category"]
|
|
|
|
| 176 |
logger.error(f"Semantic search error: {e}", exc_info=True)
|
| 177 |
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False}), 500
|
| 178 |
|
| 179 |
+
@app.route('/get_all_articles/<category>')
|
| 180 |
+
def get_all_articles(category):
|
| 181 |
+
try:
|
| 182 |
+
all_docs = get_all_docs_from_db()
|
| 183 |
+
enriched_articles = process_docs_into_articles(all_docs)
|
| 184 |
+
|
| 185 |
+
category_articles = [
|
| 186 |
+
article for article in enriched_articles if article["category"] == category
|
| 187 |
+
]
|
| 188 |
+
|
| 189 |
+
category_articles.sort(key=lambda x: x["published"], reverse=True)
|
| 190 |
+
return jsonify({"articles": category_articles, "category": category})
|
| 191 |
+
except Exception as e:
|
| 192 |
+
logger.error(f"Error fetching all articles for category {category}: {e}")
|
| 193 |
+
return jsonify({"articles": [], "category": category}), 500
|
| 194 |
|
| 195 |
@app.route('/check_loading')
|
| 196 |
def check_loading():
|
| 197 |
global loading_complete, last_update_time
|
| 198 |
+
return jsonify({"status": "complete" if loading_complete else "loading", "last_update": last_update_time})
|
|
|
|
|
|
|
| 199 |
|
| 200 |
@app.route('/get_updates')
|
| 201 |
def get_updates():
|
| 202 |
global last_update_time, last_data_hash
|
| 203 |
try:
|
| 204 |
+
all_docs = get_all_docs_from_db()
|
| 205 |
+
if not all_docs['metadatas']:
|
| 206 |
+
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False})
|
| 207 |
+
|
| 208 |
+
enriched_articles = process_docs_into_articles(all_docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
categorized_articles = {}
|
| 210 |
for article in enriched_articles:
|
| 211 |
cat = article["category"]
|
| 212 |
+
categorized_articles.setdefault(cat, []).append(article)
|
| 213 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
for cat in categorized_articles:
|
| 215 |
+
categorized_articles[cat].sort(key=lambda x: x["published"], reverse=True)
|
| 216 |
+
categorized_articles[cat] = categorized_articles[cat][:10]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
|
|
|
| 218 |
current_data_hash = compute_data_hash(categorized_articles)
|
|
|
|
|
|
|
| 219 |
has_updates = last_data_hash != current_data_hash
|
| 220 |
+
|
| 221 |
if has_updates:
|
| 222 |
logger.info("New RSS data detected, sending updates to frontend")
|
| 223 |
last_data_hash = current_data_hash
|
| 224 |
+
return jsonify({"articles": categorized_articles, "last_update": last_update_time, "has_updates": True})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
else:
|
| 226 |
+
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
except Exception as e:
|
| 228 |
logger.error(f"Error fetching updates: {e}")
|
| 229 |
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False}), 500
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
@app.route('/card')
|
| 232 |
def card_load():
|
| 233 |
return render_template("card.html")
|