Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -176,184 +176,5 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
|
|
176 |
)
|
177 |
app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
|
178 |
|
179 |
-
if __name__ == "__main__":
|
180 |
-
app.launch(debug=True)import gradio as gr
|
181 |
-
import pandas as pd
|
182 |
-
from datasets import load_dataset, get_dataset_split_names
|
183 |
-
from huggingface_hub import HfApi
|
184 |
-
import os
|
185 |
-
import pathlib
|
186 |
-
import uuid
|
187 |
-
import logging
|
188 |
-
import threading
|
189 |
-
import time
|
190 |
-
import socket
|
191 |
-
import uvicorn
|
192 |
-
|
193 |
-
# --- Setup Logging ---
|
194 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
195 |
-
|
196 |
-
# --- Embedding Atlas Imports ---
|
197 |
-
from embedding_atlas.data_source import DataSource
|
198 |
-
from embedding_atlas.server import make_server
|
199 |
-
from embedding_atlas.projection import compute_text_projection
|
200 |
-
from embedding_atlas.utils import Hasher
|
201 |
-
|
202 |
-
# --- Helper functions ---
|
203 |
-
def find_column_name(existing_names, candidate):
|
204 |
-
if candidate not in existing_names:
|
205 |
-
return candidate
|
206 |
-
index = 1
|
207 |
-
while True:
|
208 |
-
s = f"{candidate}_{index}"
|
209 |
-
if s not in existing_names:
|
210 |
-
return s
|
211 |
-
index += 1
|
212 |
-
|
213 |
-
def find_available_port(start_port: int, max_attempts: int = 100):
|
214 |
-
"""Finds an available TCP port on the host."""
|
215 |
-
for port in range(start_port, start_port + max_attempts):
|
216 |
-
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
217 |
-
if s.connect_ex(('127.0.0.1', port)) != 0:
|
218 |
-
logging.info(f"Found available port: {port}")
|
219 |
-
return port
|
220 |
-
raise RuntimeError("Could not find an available port.")
|
221 |
-
|
222 |
-
def run_atlas_server(app, port):
|
223 |
-
"""Target function for the background thread to run the Uvicorn server."""
|
224 |
-
logging.info(f"Starting Atlas server on http://127.0.0.1:{port}")
|
225 |
-
uvicorn.run(app, host="127.0.0.1", port=port, log_level="warning")
|
226 |
-
|
227 |
-
# --- Hugging Face API Helpers ---
|
228 |
-
hf_api = HfApi()
|
229 |
-
|
230 |
-
def get_user_datasets(username: str):
|
231 |
-
logging.info(f"Fetching datasets for user: {username}")
|
232 |
-
if not username: return gr.update(choices=[], value=None, interactive=False)
|
233 |
-
try:
|
234 |
-
datasets = hf_api.list_datasets(author=username, full=True)
|
235 |
-
dataset_ids = [d.id for d in datasets if not d.private]
|
236 |
-
logging.info(f"Found {len(dataset_ids)} datasets.")
|
237 |
-
return gr.update(choices=sorted(dataset_ids), value=None, interactive=True)
|
238 |
-
except Exception as e:
|
239 |
-
logging.error(f"Failed to fetch datasets: {e}")
|
240 |
-
return gr.update(choices=[], value=None, interactive=False)
|
241 |
-
|
242 |
-
def get_dataset_splits(dataset_id: str):
|
243 |
-
logging.info(f"Fetching splits for: {dataset_id}")
|
244 |
-
if not dataset_id: return gr.update(choices=[], value=None, interactive=False)
|
245 |
-
try:
|
246 |
-
splits = get_dataset_split_names(dataset_id)
|
247 |
-
logging.info(f"Found splits: {splits}")
|
248 |
-
return gr.update(choices=splits, value=splits[0] if splits else None, interactive=True)
|
249 |
-
except Exception as e:
|
250 |
-
logging.error(f"Failed to fetch splits: {e}")
|
251 |
-
return gr.update(choices=[], value=None, interactive=False)
|
252 |
-
|
253 |
-
def get_split_columns(dataset_id: str, split: str):
|
254 |
-
logging.info(f"Fetching columns for: {dataset_id}/{split}")
|
255 |
-
if not dataset_id or not split: return gr.update(choices=[], value=None, interactive=False)
|
256 |
-
try:
|
257 |
-
dataset_sample = load_dataset(dataset_id, split=split, streaming=True)
|
258 |
-
first_row = next(iter(dataset_sample))
|
259 |
-
columns = list(first_row.keys())
|
260 |
-
logging.info(f"Found columns: {columns}")
|
261 |
-
preferred_cols = ['text', 'content', 'instruction', 'question', 'document', 'prompt']
|
262 |
-
best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
|
263 |
-
return gr.update(choices=columns, value=best_col, interactive=True)
|
264 |
-
except Exception as e:
|
265 |
-
logging.error(f"Failed to get columns: {e}", exc_info=True)
|
266 |
-
return gr.update(choices=[], value=None, interactive=False)
|
267 |
-
|
268 |
-
# --- Main Atlas Generation Logic ---
|
269 |
-
def generate_atlas(
|
270 |
-
dataset_name: str,
|
271 |
-
split: str,
|
272 |
-
text_column: str,
|
273 |
-
sample_size: int,
|
274 |
-
model_name: str,
|
275 |
-
umap_neighbors: int,
|
276 |
-
umap_min_dist: float,
|
277 |
-
progress=gr.Progress(track_tqdm=True)
|
278 |
-
):
|
279 |
-
if not all([dataset_name, split, text_column]):
|
280 |
-
raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
|
281 |
-
|
282 |
-
progress(0, desc="Loading dataset...")
|
283 |
-
df = load_dataset(dataset_name, split=split).to_pandas()
|
284 |
-
if sample_size > 0 and sample_size < len(df):
|
285 |
-
df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
|
286 |
-
|
287 |
-
progress(0.2, desc="Computing embeddings and UMAP...")
|
288 |
-
x_col = find_column_name(df.columns, "projection_x")
|
289 |
-
y_col = find_column_name(df.columns, "projection_y")
|
290 |
-
neighbors_col = find_column_name(df.columns, "__neighbors")
|
291 |
-
compute_text_projection(
|
292 |
-
df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
|
293 |
-
umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
|
294 |
-
)
|
295 |
-
|
296 |
-
progress(0.8, desc="Preparing Atlas data source...")
|
297 |
-
id_col = find_column_name(df.columns, "_row_index")
|
298 |
-
df[id_col] = range(df.shape[0])
|
299 |
-
metadata = {"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col}}
|
300 |
-
hasher = Hasher()
|
301 |
-
hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}-{uuid.uuid4()}")
|
302 |
-
identifier = hasher.hexdigest()
|
303 |
-
atlas_dataset = DataSource(identifier, df, metadata)
|
304 |
-
|
305 |
-
progress(0.9, desc="Starting Atlas server...")
|
306 |
-
static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
|
307 |
-
atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
|
308 |
-
|
309 |
-
# Find an open port and run the server in a background thread
|
310 |
-
port = find_available_port(start_port=8001)
|
311 |
-
thread = threading.Thread(target=run_atlas_server, args=(atlas_app, port), daemon=True)
|
312 |
-
thread.start()
|
313 |
-
|
314 |
-
# Give the server a moment to start up
|
315 |
-
time.sleep(2)
|
316 |
-
|
317 |
-
iframe_html = f"<iframe src='http://127.0.0.1:{port}' width='100%' height='800px' frameborder='0'></iframe>"
|
318 |
-
return gr.HTML(iframe_html)
|
319 |
-
|
320 |
-
# --- Gradio UI Definition ---
|
321 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
|
322 |
-
# UI elements...
|
323 |
-
gr.Markdown("# Embedding Atlas Explorer")
|
324 |
-
# ... (rest of the UI is the same as before) ...
|
325 |
-
with gr.Row():
|
326 |
-
with gr.Column(scale=1):
|
327 |
-
gr.Markdown("### 1. Select Data")
|
328 |
-
hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
|
329 |
-
dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
|
330 |
-
split_input = gr.Dropdown(label="Select a Split", interactive=False)
|
331 |
-
text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
|
332 |
-
|
333 |
-
gr.Markdown("### 2. Configure Visualization")
|
334 |
-
sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
|
335 |
-
|
336 |
-
with gr.Accordion("Advanced Settings", open=False):
|
337 |
-
model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
|
338 |
-
umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
|
339 |
-
umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")
|
340 |
-
|
341 |
-
generate_button = gr.Button("Generate Atlas", variant="primary")
|
342 |
-
|
343 |
-
with gr.Column(scale=3):
|
344 |
-
gr.Markdown("### 3. Explore Atlas")
|
345 |
-
output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")
|
346 |
-
|
347 |
-
# --- Event Listeners ---
|
348 |
-
hf_user_input.submit(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
|
349 |
-
dataset_input.change(fn=get_dataset_splits, inputs=dataset_input, outputs=split_input)
|
350 |
-
split_input.change(fn=get_split_columns, inputs=[dataset_input, split_input], outputs=text_column_input)
|
351 |
-
generate_button.click(
|
352 |
-
fn=generate_atlas,
|
353 |
-
inputs=[dataset_input, split_input, text_column_input, sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input],
|
354 |
-
outputs=[output_html],
|
355 |
-
)
|
356 |
-
app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
|
357 |
-
|
358 |
if __name__ == "__main__":
|
359 |
app.launch(debug=True)
|
|
|
176 |
)
|
177 |
app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
if __name__ == "__main__":
|
180 |
app.launch(debug=True)
|