Embedding-Atlas / app.py
broadfield-dev's picture
Update app.py
701c41c verified
raw
history blame
9.03 kB
import gradio as gr
import pandas as pd
from datasets import load_dataset, get_dataset_split_names
from huggingface_hub import HfApi, HfFolder
import os
import pathlib
import uuid
# --- Embedding Atlas Imports ---
from embedding_atlas.data_source import DataSource
from embedding_atlas.server import make_server
from embedding_atlas.projection import compute_text_projection
from embedding_atlas.utils import Hasher
# --- Helper function from embedding_atlas/cli.py ---
def find_column_name(existing_names, candidate):
"""Finds a unique column name, appending '_1', '_2', etc. if the candidate name already exists."""
if candidate not in existing_names:
return candidate
else:
index = 1
while True:
s = f"{candidate}_{index}"
if s not in existing_names:
return s
index += 1
# --- Hugging Face API Helpers for Dynamic UI ---
hf_api = HfApi()
def get_user_datasets(username: str):
"""Fetches all public datasets for a given username or organization."""
if not username:
return gr.Dropdown.update(choices=[], value=None, interactive=False)
try:
datasets = hf_api.list_datasets(author=username, cardData=True)
dataset_ids = [d.id for d in datasets if not d.private]
return gr.Dropdown.update(choices=sorted(dataset_ids), value=None, interactive=True)
except Exception as e:
gr.Warning(f"Could not fetch datasets for user '{username}'. Error: {e}")
return gr.Dropdown.update(choices=[], value=None, interactive=False)
def get_dataset_splits(dataset_id: str):
"""Gets all available splits for a selected dataset."""
if not dataset_id:
return gr.Dropdown.update(choices=[], value=None, interactive=False)
try:
splits = get_dataset_split_names(dataset_id)
return gr.Dropdown.update(choices=splits, value=splits[0] if splits else None, interactive=True)
except Exception as e:
gr.Warning(f"Could not fetch splits for dataset '{dataset_id}'. Error: {e}")
return gr.Dropdown.update(choices=[], value=None, interactive=False)
def get_split_columns(dataset_id: str, split: str):
"""Gets all columns for a selected split by loading one row."""
if not dataset_id or not split:
return gr.Dropdown.update(choices=[], value=None, interactive=False)
try:
# Stream one row to get column names without downloading the whole dataset
dataset_sample = load_dataset(dataset_id, split=split, streaming=True)
first_row = next(iter(dataset_sample))
columns = list(first_row.keys())
# Heuristically find the best text column
preferred_cols = ['text', 'content', 'instruction', 'question', 'document']
best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
return gr.Dropdown.update(choices=columns, value=best_col, interactive=True)
except Exception as e:
gr.Warning(f"Could not fetch columns for split '{split}'. Error: {e}")
return gr.Dropdown.update(choices=[], value=None, interactive=False)
# --- Main Atlas Generation Logic ---
def generate_atlas(
dataset_name: str,
split: str,
text_column: str,
sample_size: int,
model_name: str,
umap_neighbors: int,
umap_min_dist: float,
progress=gr.Progress(track_tqdm=True)
):
"""
Loads data, computes embeddings, and serves the Embedding Atlas UI.
"""
if not all([dataset_name, split, text_column]):
raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
progress(0, desc=f"Loading dataset '{dataset_name}' [{split}]...")
try:
dataset = load_dataset(dataset_name, split=split)
df = dataset.to_pandas()
except Exception as e:
raise gr.Error(f"Failed to load data. Error: {e}")
if sample_size > 0 and sample_size < len(df):
progress(0.1, desc=f"Sampling {sample_size} rows...")
df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
if text_column not in df.columns:
raise gr.Error(f"Column '{text_column}' not found. Please select a valid column.")
progress(0.2, desc="Computing embeddings and UMAP. This may take a while...")
x_col = find_column_name(df.columns, "projection_x")
y_col = find_column_name(df.columns, "projection_y")
neighbors_col = find_column_name(df.columns, "__neighbors")
try:
compute_text_projection(
df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
)
except Exception as e:
raise gr.Error(f"Failed to compute embeddings. Check model name or try a smaller sample. Error: {e}")
progress(0.8, desc="Preparing Atlas data source...")
id_col = find_column_name(df.columns, "_row_index")
df[id_col] = range(df.shape[0])
metadata = {
"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col},
}
hasher = Hasher()
hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}")
identifier = hasher.hexdigest()
atlas_dataset = DataSource(identifier, df, metadata)
progress(0.9, desc="Mounting visualization UI...")
static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
mount_path = f"/{uuid.uuid4().hex}"
atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
# --- THIS IS THE FIX ---
# Call mount_gradio_app on the Blocks instance `app`
app.mount_gradio_app(atlas_app, path=mount_path)
progress(1.0, desc="Done!")
iframe_html = f"<iframe src='{mount_path}' width='100%' height='800px' frameborder='0'></iframe>"
return gr.HTML(iframe_html)
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
gr.Markdown("# Embedding Atlas Explorer")
gr.Markdown(
"Interactively select and visualize any text-based dataset from the Hugging Face Hub. "
"The app computes embeddings and projects them into a 2D map for exploration."
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Select Data")
hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
split_input = gr.Dropdown(label="Select a Split", interactive=False)
text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
gr.Markdown("### 2. Configure Visualization")
sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
with gr.Accordion("Advanced Settings", open=False):
model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")
generate_button = gr.Button("Generate Atlas", variant="primary")
with gr.Column(scale=3):
gr.Markdown("### 3. Explore Atlas")
output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")
# --- Chained Event Listeners for Dynamic UI ---
hf_user_input.submit(
fn=get_user_datasets,
inputs=[hf_user_input],
outputs=[dataset_input]
)
dataset_input.select(
fn=get_dataset_splits,
inputs=[dataset_input],
outputs=[split_input]
)
split_input.select(
fn=get_split_columns,
inputs=[dataset_input, split_input],
outputs=[text_column_input]
)
# --- Button Click Event ---
generate_button.click(
fn=generate_atlas,
inputs=[
dataset_input, split_input, text_column_input,
sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input
],
outputs=[output_html],
)
# Load initial example data on app load
app.load(fn=get_user_datasets, inputs=[hf_user_input], outputs=[dataset_input])
if __name__ == "__main__":
# To run locally, you might need to log in to Hugging Face Hub
# HfFolder.save_token("YOUR_HF_TOKEN")
app.launch()