Spaces:
Sleeping
Sleeping
File size: 17,108 Bytes
bb95205 fe5ff1b 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c 36b7e3f 8bd698c 98fe021 fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 36b7e3f fd3f0f2 8bd698c fd3f0f2 8bd698c fd3f0f2 bb95205 8bd698c fd3f0f2 8bd698c c5a0831 bb95205 a9fb05a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import gradio as gr
import pandas as pd
from datasets import load_dataset, get_dataset_split_names
from huggingface_hub import HfApi
import os
import pathlib
import uuid
import logging
import threading
import time
import socket
import uvicorn
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Embedding Atlas Imports ---
from embedding_atlas.data_source import DataSource
from embedding_atlas.server import make_server
from embedding_atlas.projection import compute_text_projection
from embedding_atlas.utils import Hasher
# --- Helper functions ---
def find_column_name(existing_names, candidate):
if candidate not in existing_names:
return candidate
index = 1
while True:
s = f"{candidate}_{index}"
if s not in existing_names:
return s
index += 1
def find_available_port(start_port: int, max_attempts: int = 100):
"""Finds an available TCP port on the host."""
for port in range(start_port, start_port + max_attempts):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
if s.connect_ex(('127.0.0.1', port)) != 0:
logging.info(f"Found available port: {port}")
return port
raise RuntimeError("Could not find an available port.")
def run_atlas_server(app, port):
"""Target function for the background thread to run the Uvicorn server."""
logging.info(f"Starting Atlas server on http://127.0.0.1:{port}")
uvicorn.run(app, host="127.0.0.1", port=port, log_level="warning")
# --- Hugging Face API Helpers ---
hf_api = HfApi()
def get_user_datasets(username: str):
logging.info(f"Fetching datasets for user: {username}")
if not username: return gr.update(choices=[], value=None, interactive=False)
try:
datasets = hf_api.list_datasets(author=username, full=True)
dataset_ids = [d.id for d in datasets if not d.private]
logging.info(f"Found {len(dataset_ids)} datasets.")
return gr.update(choices=sorted(dataset_ids), value=None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch datasets: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_dataset_splits(dataset_id: str):
logging.info(f"Fetching splits for: {dataset_id}")
if not dataset_id: return gr.update(choices=[], value=None, interactive=False)
try:
splits = get_dataset_split_names(dataset_id)
logging.info(f"Found splits: {splits}")
return gr.update(choices=splits, value=splits[0] if splits else None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch splits: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_split_columns(dataset_id: str, split: str):
logging.info(f"Fetching columns for: {dataset_id}/{split}")
if not dataset_id or not split: return gr.update(choices=[], value=None, interactive=False)
try:
dataset_sample = load_dataset(dataset_id, split=split, streaming=True)
first_row = next(iter(dataset_sample))
columns = list(first_row.keys())
logging.info(f"Found columns: {columns}")
preferred_cols = ['text', 'content', 'instruction', 'question', 'document', 'prompt']
best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
return gr.update(choices=columns, value=best_col, interactive=True)
except Exception as e:
logging.error(f"Failed to get columns: {e}", exc_info=True)
return gr.update(choices=[], value=None, interactive=False)
# --- Main Atlas Generation Logic ---
def generate_atlas(
dataset_name: str,
split: str,
text_column: str,
sample_size: int,
model_name: str,
umap_neighbors: int,
umap_min_dist: float,
progress=gr.Progress(track_tqdm=True)
):
if not all([dataset_name, split, text_column]):
raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
progress(0, desc="Loading dataset...")
df = load_dataset(dataset_name, split=split).to_pandas()
if sample_size > 0 and sample_size < len(df):
df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
progress(0.2, desc="Computing embeddings and UMAP...")
x_col = find_column_name(df.columns, "projection_x")
y_col = find_column_name(df.columns, "projection_y")
neighbors_col = find_column_name(df.columns, "__neighbors")
compute_text_projection(
df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
)
progress(0.8, desc="Preparing Atlas data source...")
id_col = find_column_name(df.columns, "_row_index")
df[id_col] = range(df.shape[0])
metadata = {"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col}}
hasher = Hasher()
hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}-{uuid.uuid4()}")
identifier = hasher.hexdigest()
atlas_dataset = DataSource(identifier, df, metadata)
progress(0.9, desc="Starting Atlas server...")
static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
# Find an open port and run the server in a background thread
port = find_available_port(start_port=8001)
thread = threading.Thread(target=run_atlas_server, args=(atlas_app, port), daemon=True)
thread.start()
# Give the server a moment to start up
time.sleep(2)
iframe_html = f"<iframe src='http://127.0.0.1:{port}' width='100%' height='800px' frameborder='0'></iframe>"
return gr.HTML(iframe_html)
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
# UI elements...
gr.Markdown("# Embedding Atlas Explorer")
# ... (rest of the UI is the same as before) ...
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Select Data")
hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
split_input = gr.Dropdown(label="Select a Split", interactive=False)
text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
gr.Markdown("### 2. Configure Visualization")
sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
with gr.Accordion("Advanced Settings", open=False):
model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")
generate_button = gr.Button("Generate Atlas", variant="primary")
with gr.Column(scale=3):
gr.Markdown("### 3. Explore Atlas")
output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")
# --- Event Listeners ---
hf_user_input.submit(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
dataset_input.change(fn=get_dataset_splits, inputs=dataset_input, outputs=split_input)
split_input.change(fn=get_split_columns, inputs=[dataset_input, split_input], outputs=text_column_input)
generate_button.click(
fn=generate_atlas,
inputs=[dataset_input, split_input, text_column_input, sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input],
outputs=[output_html],
)
app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
if __name__ == "__main__":
app.launch(debug=True)import gradio as gr
import pandas as pd
from datasets import load_dataset, get_dataset_split_names
from huggingface_hub import HfApi
import os
import pathlib
import uuid
import logging
import threading
import time
import socket
import uvicorn
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Embedding Atlas Imports ---
from embedding_atlas.data_source import DataSource
from embedding_atlas.server import make_server
from embedding_atlas.projection import compute_text_projection
from embedding_atlas.utils import Hasher
# --- Helper functions ---
def find_column_name(existing_names, candidate):
if candidate not in existing_names:
return candidate
index = 1
while True:
s = f"{candidate}_{index}"
if s not in existing_names:
return s
index += 1
def find_available_port(start_port: int, max_attempts: int = 100):
"""Finds an available TCP port on the host."""
for port in range(start_port, start_port + max_attempts):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
if s.connect_ex(('127.0.0.1', port)) != 0:
logging.info(f"Found available port: {port}")
return port
raise RuntimeError("Could not find an available port.")
def run_atlas_server(app, port):
"""Target function for the background thread to run the Uvicorn server."""
logging.info(f"Starting Atlas server on http://127.0.0.1:{port}")
uvicorn.run(app, host="127.0.0.1", port=port, log_level="warning")
# --- Hugging Face API Helpers ---
hf_api = HfApi()
def get_user_datasets(username: str):
logging.info(f"Fetching datasets for user: {username}")
if not username: return gr.update(choices=[], value=None, interactive=False)
try:
datasets = hf_api.list_datasets(author=username, full=True)
dataset_ids = [d.id for d in datasets if not d.private]
logging.info(f"Found {len(dataset_ids)} datasets.")
return gr.update(choices=sorted(dataset_ids), value=None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch datasets: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_dataset_splits(dataset_id: str):
logging.info(f"Fetching splits for: {dataset_id}")
if not dataset_id: return gr.update(choices=[], value=None, interactive=False)
try:
splits = get_dataset_split_names(dataset_id)
logging.info(f"Found splits: {splits}")
return gr.update(choices=splits, value=splits[0] if splits else None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch splits: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_split_columns(dataset_id: str, split: str):
logging.info(f"Fetching columns for: {dataset_id}/{split}")
if not dataset_id or not split: return gr.update(choices=[], value=None, interactive=False)
try:
dataset_sample = load_dataset(dataset_id, split=split, streaming=True)
first_row = next(iter(dataset_sample))
columns = list(first_row.keys())
logging.info(f"Found columns: {columns}")
preferred_cols = ['text', 'content', 'instruction', 'question', 'document', 'prompt']
best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
return gr.update(choices=columns, value=best_col, interactive=True)
except Exception as e:
logging.error(f"Failed to get columns: {e}", exc_info=True)
return gr.update(choices=[], value=None, interactive=False)
# --- Main Atlas Generation Logic ---
def generate_atlas(
dataset_name: str,
split: str,
text_column: str,
sample_size: int,
model_name: str,
umap_neighbors: int,
umap_min_dist: float,
progress=gr.Progress(track_tqdm=True)
):
if not all([dataset_name, split, text_column]):
raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
progress(0, desc="Loading dataset...")
df = load_dataset(dataset_name, split=split).to_pandas()
if sample_size > 0 and sample_size < len(df):
df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
progress(0.2, desc="Computing embeddings and UMAP...")
x_col = find_column_name(df.columns, "projection_x")
y_col = find_column_name(df.columns, "projection_y")
neighbors_col = find_column_name(df.columns, "__neighbors")
compute_text_projection(
df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
)
progress(0.8, desc="Preparing Atlas data source...")
id_col = find_column_name(df.columns, "_row_index")
df[id_col] = range(df.shape[0])
metadata = {"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col}}
hasher = Hasher()
hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}-{uuid.uuid4()}")
identifier = hasher.hexdigest()
atlas_dataset = DataSource(identifier, df, metadata)
progress(0.9, desc="Starting Atlas server...")
static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
# Find an open port and run the server in a background thread
port = find_available_port(start_port=8001)
thread = threading.Thread(target=run_atlas_server, args=(atlas_app, port), daemon=True)
thread.start()
# Give the server a moment to start up
time.sleep(2)
iframe_html = f"<iframe src='http://127.0.0.1:{port}' width='100%' height='800px' frameborder='0'></iframe>"
return gr.HTML(iframe_html)
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
# UI elements...
gr.Markdown("# Embedding Atlas Explorer")
# ... (rest of the UI is the same as before) ...
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Select Data")
hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
split_input = gr.Dropdown(label="Select a Split", interactive=False)
text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
gr.Markdown("### 2. Configure Visualization")
sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
with gr.Accordion("Advanced Settings", open=False):
model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")
generate_button = gr.Button("Generate Atlas", variant="primary")
with gr.Column(scale=3):
gr.Markdown("### 3. Explore Atlas")
output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")
# --- Event Listeners ---
hf_user_input.submit(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
dataset_input.change(fn=get_dataset_splits, inputs=dataset_input, outputs=split_input)
split_input.change(fn=get_split_columns, inputs=[dataset_input, split_input], outputs=text_column_input)
generate_button.click(
fn=generate_atlas,
inputs=[dataset_input, split_input, text_column_input, sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input],
outputs=[output_html],
)
app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
if __name__ == "__main__":
app.launch(debug=True) |