File size: 9,176 Bytes
bb95205
fe5ff1b
8bd698c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c307f
8bd698c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fe021
8bd698c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5ff1b
bb95205
 
8bd698c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
701c41c
8bd698c
c5a0831
bb95205
8bd698c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import pandas as pd
from datasets import load_dataset, get_dataset_split_names
from huggingface_hub import HfApi
import os
import pathlib
import uuid
import logging

# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# --- Embedding Atlas Imports ---
from embedding_atlas.data_source import DataSource
from embedding_atlas.server import make_server
from embedding_atlas.projection import compute_text_projection
from embedding_atlas.utils import Hasher

# --- Helper function from embedding_atlas/cli.py ---
def find_column_name(existing_names, candidate):
    """Finds a unique column name, appending '_1', '_2', etc. if the candidate name already exists."""
    if candidate not in existing_names:
        return candidate
    else:
        index = 1
        while True:
            s = f"{candidate}_{index}"
            if s not in existing_names:
                return s
            index += 1

# --- Hugging Face API Helpers for Dynamic UI ---
hf_api = HfApi()

def get_user_datasets(username: str):
    logging.info(f"Fetching datasets for user: {username}")
    if not username:
        return gr.update(choices=[], value=None, interactive=False)
    try:
        datasets = hf_api.list_datasets(author=username, full=True)
        dataset_ids = [d.id for d in datasets if not d.private]
        logging.info(f"Found {len(dataset_ids)} datasets for {username}.")
        return gr.update(choices=sorted(dataset_ids), value=None, interactive=True)
    except Exception as e:
        logging.error(f"Failed to fetch datasets for {username}: {e}")
        gr.Warning(f"Could not fetch datasets for user '{username}'.")
        return gr.update(choices=[], value=None, interactive=False)

def get_dataset_splits(dataset_id: str):
    logging.info(f"Fetching splits for dataset: {dataset_id}")
    if not dataset_id:
        return gr.update(choices=[], value=None, interactive=False)
    try:
        splits = get_dataset_split_names(dataset_id)
        logging.info(f"Found splits for {dataset_id}: {splits}")
        return gr.update(choices=splits, value=splits[0] if splits else None, interactive=True)
    except Exception as e:
        logging.error(f"Failed to fetch splits for {dataset_id}: {e}")
        gr.Warning(f"Could not fetch splits for dataset '{dataset_id}'.")
        return gr.update(choices=[], value=None, interactive=False)

def get_split_columns(dataset_id: str, split: str):
    logging.info(f"Fetching columns for: {dataset_id}, split: {split}")
    if not dataset_id or not split:
        return gr.update(choices=[], value=None, interactive=False)
    try:
        dataset_sample = load_dataset(dataset_id, split=split, streaming=True)
        first_row = next(iter(dataset_sample))
        columns = list(first_row.keys())
        logging.info(f"Found columns: {columns}")
        preferred_cols = ['text', 'content', 'instruction', 'question', 'document', 'prompt']
        best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
        logging.info(f"Best default column chosen: {best_col}")
        return gr.update(choices=columns, value=best_col, interactive=True)
    except Exception as e:
        logging.error(f"Failed to get columns for {dataset_id}/{split}: {e}", exc_info=True)
        gr.Warning(f"Could not fetch columns for split '{split}'. Error: {e}")
        return gr.update(choices=[], value=None, interactive=False)

# --- Main Atlas Generation Logic ---
def generate_atlas(
    dataset_name: str,
    split: str,
    text_column: str,
    sample_size: int,
    model_name: str,
    umap_neighbors: int,
    umap_min_dist: float,
    progress: gr.Progress,
    request: gr.Request  # <<< STEP 1: ADD THE REQUEST OBJECT TO THE FUNCTION SIGNATURE
):
    """
    Loads data, computes embeddings, and serves the Embedding Atlas UI.
    """
    if not all([dataset_name, split, text_column]):
        raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
        
    progress(0, desc=f"Loading dataset '{dataset_name}' [{split}]...")
    try:
        dataset = load_dataset(dataset_name, split=split)
        df = dataset.to_pandas()
    except Exception as e:
        raise gr.Error(f"Failed to load data. Error: {e}")

    if sample_size > 0 and sample_size < len(df):
        progress(0.1, desc=f"Sampling {sample_size} rows...")
        df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
    
    if text_column not in df.columns:
        raise gr.Error(f"Column '{text_column}' not found. Please select a valid column.")

    progress(0.2, desc="Computing embeddings and UMAP...")
    x_col = find_column_name(df.columns, "projection_x")
    y_col = find_column_name(df.columns, "projection_y")
    neighbors_col = find_column_name(df.columns, "__neighbors")
    
    try:
        compute_text_projection(
            df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
            umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
        )
    except Exception as e:
        raise gr.Error(f"Failed to compute embeddings. Check model name or sample size. Error: {e}")

    progress(0.8, desc="Preparing Atlas data source...")
    id_col = find_column_name(df.columns, "_row_index")
    df[id_col] = range(df.shape[0])

    metadata = {"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col}}
    hasher = Hasher()
    hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}")
    identifier = hasher.hexdigest()
    atlas_dataset = DataSource(identifier, df, metadata)
    
    progress(0.9, desc="Mounting visualization UI...")
    static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
    mount_path = f"/{uuid.uuid4().hex}"
    atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
    
    # --- STEP 2: USE THE CORRECT MOUNT METHOD VIA THE REQUEST OBJECT ---
    logging.info(f"Mounting FastAPI app at path: {mount_path}")
    request.app.mount(mount_path, atlas_app)

    progress(1.0, desc="Done!")
    iframe_html = f"<iframe src='{mount_path}' width='100%' height='800px' frameborder='0'></iframe>"
    return gr.HTML(iframe_html)

# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
    gr.Markdown("# Embedding Atlas Explorer")
    gr.Markdown("Interactively select and visualize any text-based dataset from the Hugging Face Hub.")

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 1. Select Data")
            hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
            dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
            split_input = gr.Dropdown(label="Select a Split", interactive=False)
            text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
            
            gr.Markdown("### 2. Configure Visualization")
            sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
            
            with gr.Accordion("Advanced Settings", open=False):
                model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
                umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
                umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")

            generate_button = gr.Button("Generate Atlas", variant="primary")

        with gr.Column(scale=3):
            gr.Markdown("### 3. Explore Atlas")
            output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")

    # --- Chained Event Listeners for Dynamic UI ---
    hf_user_input.submit(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
    dataset_input.change(fn=get_dataset_splits, inputs=dataset_input, outputs=split_input)
    split_input.change(fn=get_split_columns, inputs=[dataset_input, split_input], outputs=text_column_input)
    
    # --- Button Click Event ---
    # Note: We do NOT add `request` to the inputs list. Gradio injects it automatically.
    generate_button.click(
        fn=generate_atlas,
        inputs=[dataset_input, split_input, text_column_input, sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input],
        outputs=[output_html],
    )
    
    app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)

if __name__ == "__main__":
    app.launch(debug=True)