Spaces:
Sleeping
Sleeping
File size: 9,176 Bytes
bb95205 fe5ff1b 8bd698c f8c307f 8bd698c 98fe021 8bd698c fe5ff1b bb95205 8bd698c 701c41c 8bd698c c5a0831 bb95205 8bd698c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import pandas as pd
from datasets import load_dataset, get_dataset_split_names
from huggingface_hub import HfApi
import os
import pathlib
import uuid
import logging
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Embedding Atlas Imports ---
from embedding_atlas.data_source import DataSource
from embedding_atlas.server import make_server
from embedding_atlas.projection import compute_text_projection
from embedding_atlas.utils import Hasher
# --- Helper function from embedding_atlas/cli.py ---
def find_column_name(existing_names, candidate):
"""Finds a unique column name, appending '_1', '_2', etc. if the candidate name already exists."""
if candidate not in existing_names:
return candidate
else:
index = 1
while True:
s = f"{candidate}_{index}"
if s not in existing_names:
return s
index += 1
# --- Hugging Face API Helpers for Dynamic UI ---
hf_api = HfApi()
def get_user_datasets(username: str):
logging.info(f"Fetching datasets for user: {username}")
if not username:
return gr.update(choices=[], value=None, interactive=False)
try:
datasets = hf_api.list_datasets(author=username, full=True)
dataset_ids = [d.id for d in datasets if not d.private]
logging.info(f"Found {len(dataset_ids)} datasets for {username}.")
return gr.update(choices=sorted(dataset_ids), value=None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch datasets for {username}: {e}")
gr.Warning(f"Could not fetch datasets for user '{username}'.")
return gr.update(choices=[], value=None, interactive=False)
def get_dataset_splits(dataset_id: str):
logging.info(f"Fetching splits for dataset: {dataset_id}")
if not dataset_id:
return gr.update(choices=[], value=None, interactive=False)
try:
splits = get_dataset_split_names(dataset_id)
logging.info(f"Found splits for {dataset_id}: {splits}")
return gr.update(choices=splits, value=splits[0] if splits else None, interactive=True)
except Exception as e:
logging.error(f"Failed to fetch splits for {dataset_id}: {e}")
gr.Warning(f"Could not fetch splits for dataset '{dataset_id}'.")
return gr.update(choices=[], value=None, interactive=False)
def get_split_columns(dataset_id: str, split: str):
logging.info(f"Fetching columns for: {dataset_id}, split: {split}")
if not dataset_id or not split:
return gr.update(choices=[], value=None, interactive=False)
try:
dataset_sample = load_dataset(dataset_id, split=split, streaming=True)
first_row = next(iter(dataset_sample))
columns = list(first_row.keys())
logging.info(f"Found columns: {columns}")
preferred_cols = ['text', 'content', 'instruction', 'question', 'document', 'prompt']
best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
logging.info(f"Best default column chosen: {best_col}")
return gr.update(choices=columns, value=best_col, interactive=True)
except Exception as e:
logging.error(f"Failed to get columns for {dataset_id}/{split}: {e}", exc_info=True)
gr.Warning(f"Could not fetch columns for split '{split}'. Error: {e}")
return gr.update(choices=[], value=None, interactive=False)
# --- Main Atlas Generation Logic ---
def generate_atlas(
dataset_name: str,
split: str,
text_column: str,
sample_size: int,
model_name: str,
umap_neighbors: int,
umap_min_dist: float,
progress: gr.Progress,
request: gr.Request # <<< STEP 1: ADD THE REQUEST OBJECT TO THE FUNCTION SIGNATURE
):
"""
Loads data, computes embeddings, and serves the Embedding Atlas UI.
"""
if not all([dataset_name, split, text_column]):
raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
progress(0, desc=f"Loading dataset '{dataset_name}' [{split}]...")
try:
dataset = load_dataset(dataset_name, split=split)
df = dataset.to_pandas()
except Exception as e:
raise gr.Error(f"Failed to load data. Error: {e}")
if sample_size > 0 and sample_size < len(df):
progress(0.1, desc=f"Sampling {sample_size} rows...")
df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
if text_column not in df.columns:
raise gr.Error(f"Column '{text_column}' not found. Please select a valid column.")
progress(0.2, desc="Computing embeddings and UMAP...")
x_col = find_column_name(df.columns, "projection_x")
y_col = find_column_name(df.columns, "projection_y")
neighbors_col = find_column_name(df.columns, "__neighbors")
try:
compute_text_projection(
df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
)
except Exception as e:
raise gr.Error(f"Failed to compute embeddings. Check model name or sample size. Error: {e}")
progress(0.8, desc="Preparing Atlas data source...")
id_col = find_column_name(df.columns, "_row_index")
df[id_col] = range(df.shape[0])
metadata = {"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col}}
hasher = Hasher()
hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}")
identifier = hasher.hexdigest()
atlas_dataset = DataSource(identifier, df, metadata)
progress(0.9, desc="Mounting visualization UI...")
static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
mount_path = f"/{uuid.uuid4().hex}"
atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
# --- STEP 2: USE THE CORRECT MOUNT METHOD VIA THE REQUEST OBJECT ---
logging.info(f"Mounting FastAPI app at path: {mount_path}")
request.app.mount(mount_path, atlas_app)
progress(1.0, desc="Done!")
iframe_html = f"<iframe src='{mount_path}' width='100%' height='800px' frameborder='0'></iframe>"
return gr.HTML(iframe_html)
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
gr.Markdown("# Embedding Atlas Explorer")
gr.Markdown("Interactively select and visualize any text-based dataset from the Hugging Face Hub.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Select Data")
hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
split_input = gr.Dropdown(label="Select a Split", interactive=False)
text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
gr.Markdown("### 2. Configure Visualization")
sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
with gr.Accordion("Advanced Settings", open=False):
model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")
generate_button = gr.Button("Generate Atlas", variant="primary")
with gr.Column(scale=3):
gr.Markdown("### 3. Explore Atlas")
output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")
# --- Chained Event Listeners for Dynamic UI ---
hf_user_input.submit(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
dataset_input.change(fn=get_dataset_splits, inputs=dataset_input, outputs=split_input)
split_input.change(fn=get_split_columns, inputs=[dataset_input, split_input], outputs=text_column_input)
# --- Button Click Event ---
# Note: We do NOT add `request` to the inputs list. Gradio injects it automatically.
generate_button.click(
fn=generate_atlas,
inputs=[dataset_input, split_input, text_column_input, sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input],
outputs=[output_html],
)
app.load(fn=get_user_datasets, inputs=hf_user_input, outputs=dataset_input)
if __name__ == "__main__":
app.launch(debug=True) |