Spaces:
Sleeping
Sleeping
File size: 15,324 Bytes
58b8f23 bb95205 fe5ff1b 58b8f23 f8c307f 58b8f23 98fe021 58b8f23 701c41c 58b8f23 fe5ff1b 58b8f23 bb95205 58b8f23 701c41c 58b8f23 c5a0831 bb95205 58b8f23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import (
GPT2Config,
AutoModelForCausalLM,
DataCollatorForLanguageModeling,
PreTrainedTokenizerFast,
DataCollatorWithPadding,
GenerationConfig,
)
from trl import PPOConfig, PPOTrainer, AutoModelForCausalLMWithValueHead
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import Whitespace
from datasets import Dataset, load_dataset
import os
import torch.nn as nn
import gradio as gr
import pandas as pd
import time
import re
from sentence_transformers import SentenceTransformer
import faiss
# --- Configuration & Global State ---
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SFT_MODEL_PATH = "./sft_model"
RAG_INDEX_PATH = "faiss_index.bin"
TOKENIZER_FILE_PATH = "savant_tokenizer.json"
CACHE_DIR = "./hf_cache"
SAVANT_MODEL = None
SAVANT_TOKENIZER = None
RAG_DATABASE = None
full_dataset_for_rag = None
# --- RAG Database Class ---
class VectorDatabase:
def __init__(self, embedder_model_name='all-MiniLM-L6-v2'):
self.embedder = SentenceTransformer(embedder_model_name, device=str(DEVICE), cache_folder=CACHE_DIR)
self.index = None
self.documents = []
def build_index(self, texts):
print("Building RAG vector index...")
self.documents = texts
embeddings = self.embedder.encode(texts, convert_to_tensor=True, show_progress_bar=True)
self.index = faiss.IndexFlatL2(embeddings.shape[1])
self.index.add(embeddings.cpu().numpy())
print(f"RAG Index built with {len(self.documents)} documents.")
def save_index(self, path):
if self.index:
faiss.write_index(self.index, path)
print(f"RAG Index saved to {path}")
def search(self, query, k=3):
if self.index is None:
return []
query_embedding = self.embedder.encode([query], convert_to_tensor=True)
distances, indices = self.index.search(query_embedding.cpu().numpy(), k)
return [self.documents[i] for i in indices[0]]
# --- Core Logic ---
def create_tokenizer_file_from_dataset(dataset, save_path=TOKENIZER_FILE_PATH):
corpus_path = "temp_corpus.txt"
with open(corpus_path, "w", encoding="utf-8") as f:
for item in dataset:
if item and item.get('question') and item.get('answer'):
f.write(str(item['question']) + " " + str(item['answer']) + "\n")
raw_tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
raw_tokenizer.pre_tokenizer = Whitespace()
special_tokens = ["[UNK]", "[PAD]", "<|startoftext|>", "<|endoftext|>"]
trainer = BpeTrainer(vocab_size=8192, special_tokens=special_tokens)
raw_tokenizer.train(files=[corpus_path], trainer=trainer)
os.remove(corpus_path)
raw_tokenizer.save(save_path)
return save_path
def create_seed_model(config):
return AutoModelForCausalLM.from_config(config)
def get_sft_curriculum():
return [{"name": "Phase 1: Foundational Math (SFT)", "dataset_name": "openai/gsm8k", "dataset_config": "main", "data_slice": slice(0, 100), "epochs": 1, "learning_rate": 5e-5, "mastery_threshold": 16.0}]
def get_rl_curriculum():
return {"name": "Phase 2: Problem Solving (RL)", "dataset_name": "openai/gsm8k", "dataset_config": "main", "data_slice": slice(1000, 1100), "num_steps": 100}
def get_folder_files(folder_path):
if not os.path.isdir(folder_path): return []
return [os.path.join(folder_path, f) for f in os.listdir(folder_path)]
def extract_answer(text):
text = str(text)
match = re.search(r'\\boxed\{([^}]*)\}', text)
if match:
ans = match.group(1).strip().replace(",", "")
try: return float(ans)
except ValueError: return None
matches = re.findall(r'(\d+\.?\d*|\.\d+)', text)
if matches:
try: return float(matches[-1])
except ValueError: return None
return None
# --- Master Training Process ---
def run_sft_phase(artifact_files):
global full_dataset_for_rag
log_text = "--- Starting Phase 1: Supervised Fine-Tuning (SFT) ---\n"
yield log_text, None, gr.Group(visible=False), artifact_files
stage = get_sft_curriculum()[0]
full_dataset_for_rag = load_dataset(stage['dataset_name'], name=stage['dataset_config'], split='train', cache_dir=CACHE_DIR)
tokenizer_file = create_tokenizer_file_from_dataset(full_dataset_for_rag)
artifact_files.append(tokenizer_file)
wrapped_tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_file)
wrapped_tokenizer.pad_token = "[PAD]"
log_text += f"β Tokenizer created.\n"
yield log_text, None, gr.Group(visible=False), artifact_files
config = GPT2Config(vocab_size=wrapped_tokenizer.vocab_size, n_positions=512, n_layer=4, n_head=4, n_embd=256, pad_token_id=wrapped_tokenizer.pad_token_id, eos_token_id=wrapped_tokenizer.eos_token_id)
model = create_seed_model(config).to(DEVICE)
log_text += f"β Seed Model (GPT-2 Style) Initialized.\n\n"
yield log_text, None, gr.Group(visible=False), artifact_files
data_collator = DataCollatorForLanguageModeling(tokenizer=wrapped_tokenizer, mlm=False)
stage_ds = full_dataset_for_rag.select(range(stage['data_slice'].start, stage['data_slice'].stop))
tokenized_dataset = stage_ds.map(lambda ex: wrapped_tokenizer([q + " " + a for q, a in zip(ex['question'], ex['answer'])], truncation=True, padding="max_length", max_length=512), batched=True, remove_columns=stage_ds.column_names)
dataloader = DataLoader(tokenized_dataset, batch_size=4, shuffle=True, collate_fn=data_collator)
optimizer = AdamW(model.parameters(), lr=stage['learning_rate'])
loss_history = []
avg_epoch_loss = float('inf')
for epoch in range(stage['epochs']):
base_log_for_epoch = log_text + f" Starting SFT Epoch {epoch+1}/{stage['epochs']}...\n"
yield base_log_for_epoch, None, gr.Group(visible=False), artifact_files
for batch_idx, batch in enumerate(dataloader):
batch = {k: v.to(DEVICE) for k, v in batch.items()}
optimizer.zero_grad()
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
if (batch_idx + 1) % 20 == 0:
yield base_log_for_epoch + f" - Batch {batch_idx+1}/{len(dataloader)}\n", None, gr.Group(visible=False), artifact_files
avg_epoch_loss = loss.item()
loss_history.append({"Phase": "SFT", "Epoch": epoch, "Loss": avg_epoch_loss})
loss_df = pd.DataFrame(loss_history)
log_text += f" Epoch {epoch+1}/{stage['epochs']} complete. Loss: {avg_epoch_loss:.4f}\n"
yield log_text, gr.LinePlot(loss_df, x="Epoch", y="Loss", color="Phase"), gr.Group(visible=False), artifact_files
log_text += f"β SFT Phase Complete. Final Loss: {avg_epoch_loss:.4f}\n"
if avg_epoch_loss < stage['mastery_threshold']:
log_text += f"β SFT Mastery Gate PASSED! Saving model...\n\n"
model.save_pretrained(SFT_MODEL_PATH)
wrapped_tokenizer.save_pretrained(SFT_MODEL_PATH)
artifact_files = [f for f in artifact_files if SFT_MODEL_PATH not in os.path.dirname(f)]
artifact_files.extend(get_folder_files(SFT_MODEL_PATH))
yield log_text, None, gr.Group(visible=False), artifact_files
return model, wrapped_tokenizer, log_text, artifact_files
else:
log_text += f"β SFT Mastery Gate FAILED. Stopping.\n"
yield log_text, None, gr.Group(visible=False), artifact_files
return None, None, log_text, artifact_files
def run_rl_phase(sft_model, tokenizer, initial_log_text, rl_dataset_slice, artifact_files):
global SAVANT_MODEL, SAVANT_TOKENIZER
log_text = initial_log_text
rl_curriculum = get_rl_curriculum()
log_text += f"--- Starting Phase 2: Reinforcement Learning (RL) ---\n"
yield log_text, None, gr.Group(visible=False), artifact_files
def tokenize_query(examples):
return tokenizer(examples["question"], truncation=True, max_length=512)
rl_dataset = rl_dataset_slice.map(tokenize_query, batched=True)
ppo_config = PPOConfig(
learning_rate=1.41e-5,
batch_size=4,
mini_batch_size=4,
ppo_epochs=4,
)
model_with_value_head = AutoModelForCausalLMWithValueHead.from_pretrained(SFT_MODEL_PATH).to(DEVICE)
data_collator = DataCollatorWithPadding(tokenizer)
ppo_trainer = PPOTrainer(
config=ppo_config,
model=model_with_value_head,
ref_model=None,
tokenizer=tokenizer,
dataset=rl_dataset,
data_collator=data_collator,
)
# FIXED: Create our own DataLoader to ensure the 'answer' column is preserved in the batch.
# The PPOTrainer's internal dataloader drops all columns except for model inputs.
dataloader = DataLoader(
rl_dataset,
batch_size=ppo_config.batch_size,
collate_fn=data_collator
)
generation_kwargs = {"max_new_tokens": 100, "pad_token_id": tokenizer.pad_token_id, "do_sample": True, "temperature": 0.7}
log_text += "β PPOTrainer instantiated. Starting PPO training loop...\n"
yield log_text, None, gr.Group(visible=False), artifact_files
# FIXED: Iterate over our custom dataloader, not ppo_trainer.dataloader
for step, batch in enumerate(dataloader):
if step >= rl_curriculum["num_steps"]:
break
query_tensors = batch["input_ids"].to(DEVICE)
# This will now work correctly because our dataloader preserves the 'answer' column.
ground_truth_answers = batch["answer"]
response_tensors = ppo_trainer.generate(query_tensors, return_prompt=False, **generation_kwargs)
response_texts = [tokenizer.decode(r, skip_special_tokens=True) for r in response_tensors]
rewards = []
for resp_text, gt_answer in zip(response_texts, ground_truth_answers):
pred = extract_answer(resp_text)
true = extract_answer(gt_answer)
reward_value = 1.0 if pred is not None and true is not None and abs(pred - true) < 1e-2 else 0.0
rewards.append(torch.tensor(reward_value, device=DEVICE))
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
if step % 10 == 0:
mean_reward = stats.get("ppo/returns/mean", torch.tensor(0.0)).item()
log_text += f"Step {step}/{rl_curriculum['num_steps']}, Mean Reward: {mean_reward:.2f}\n"
yield log_text, None, gr.Group(visible=False), artifact_files
log_text += "\nβ Reinforcement Learning Phase Complete! Saving final policy model...\n"
ppo_trainer.save_model(SFT_MODEL_PATH)
SAVANT_MODEL = ppo_trainer.model
SAVANT_TOKENIZER = tokenizer
artifact_files = [f for f in artifact_files if SFT_MODEL_PATH not in os.path.dirname(f)]
artifact_files.extend(get_folder_files(SFT_MODEL_PATH))
log_text += f"β Final RL-tuned model saved to {SFT_MODEL_PATH}\n"
yield log_text, None, gr.Group(visible=False), artifact_files
return log_text, artifact_files
def run_full_training():
global RAG_DATABASE, SAVANT_MODEL, SAVANT_TOKENIZER, full_dataset_for_rag
artifact_files = []
sft_model, tokenizer, log_text, artifact_files = yield from run_sft_phase(artifact_files)
if sft_model is None:
yield log_text, None, gr.Group(visible=False), artifact_files
return
log_text += "--- Building RAG Knowledge Base ---\n"
yield log_text, None, gr.Group(visible=False), artifact_files
rag_texts = [f"Question: {q}\nAnswer: {a}" for q, a in zip(full_dataset_for_rag['question'], full_dataset_for_rag['answer'])]
RAG_DATABASE = VectorDatabase()
RAG_DATABASE.build_index(rag_texts)
RAG_DATABASE.save_index(RAG_INDEX_PATH)
artifact_files.append(RAG_INDEX_PATH)
log_text += "β RAG Knowledge Base Built.\n\n"
yield log_text, None, gr.Group(visible=False), artifact_files
rl_curriculum = get_rl_curriculum()
rl_dataset_slice = full_dataset_for_rag.select(range(*rl_curriculum['data_slice'].indices(len(full_dataset_for_rag))))
final_log_text, final_artifact_files = yield from run_rl_phase(sft_model, tokenizer, log_text, rl_dataset_slice, artifact_files)
final_log_text += "\n--- Curriculum Completed: RAG-Powered Savant Ready! ---\n"
SAVANT_MODEL = AutoModelForCausalLM.from_pretrained(SFT_MODEL_PATH).to(DEVICE)
SAVANT_TOKENIZER = PreTrainedTokenizerFast.from_pretrained(SFT_MODEL_PATH)
yield final_log_text, None, gr.Group(visible=True), final_artifact_files
def run_savant_inference(user_question):
if SAVANT_MODEL is None or SAVANT_TOKENIZER is None or RAG_DATABASE is None:
return "Model or RAG Database not ready. Please run the training first."
retrieved_context = RAG_DATABASE.search(user_question, k=3)
context_str = "\n".join(retrieved_context)
augmented_prompt = f"Context:\n{context_str}\n\nQuestion:\n{user_question}\n\nAnswer:"
inputs = SAVANT_TOKENIZER(augmented_prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
response_ids = SAVANT_MODEL.generate(**inputs, max_new_tokens=150, pad_token_id=SAVANT_TOKENIZER.pad_token_id, do_sample=True, temperature=0.7, top_p=0.9)
response_text = SAVANT_TOKENIZER.decode(response_ids[0], skip_special_tokens=True)
if "Answer:" in response_text:
final_answer = response_text.split("Answer:")[-1].strip()
else:
final_answer = response_text
return f"**Savant's Answer:**\n{final_answer}\n\n**Context Used by RAG:**\n- {retrieved_context[0]}\n- {retrieved_context[1]}\n- {retrieved_context[2]}"
# --- GRADIO UI DEFINITION ---
with gr.Blocks(theme=gr.themes.Soft(), title="Savant-Garde Dashboard") as demo:
gr.Markdown("# The Savant-Garde: RAG + SFT + RL Savant Factory")
with gr.Row():
with gr.Column(scale=1):
start_button = gr.Button("π Begin Full Training", variant="primary")
log_output = gr.Textbox(label="Live Training Log", interactive=False, lines=25, max_lines=25)
with gr.Column(scale=1):
gr.Markdown("### Dashboard Visualizations")
loss_plot = gr.LinePlot(show_label=False)
with gr.Accordion("Downloadable Artifacts", open=True):
file_output = gr.File(label="Generated Files", file_count="multiple", interactive=False)
with gr.Group(visible=False) as interaction_group:
gr.Markdown("---")
gr.Markdown("### π§ Interact with the RAG-Powered Savant")
with gr.Row():
question_input = gr.Textbox(label="Ask a Math Question", placeholder="e.g., Janet has 2 apples...")
ask_button = gr.Button("Ask Savant")
savant_answer = gr.Markdown()
start_button.click(fn=run_full_training, inputs=None, outputs=[log_output, loss_plot, interaction_group, file_output])
ask_button.click(fn=run_savant_inference, inputs=question_input, outputs=savant_answer)
if __name__ == "__main__":
demo.launch(debug=True) |