Spaces:
Sleeping
Sleeping
File size: 9,029 Bytes
bb95205 fe5ff1b 701c41c 2a4d2b6 5d7eb35 bb95205 f8c307f bb95205 701c41c bb95205 701c41c e195296 701c41c 2a4d2b6 701c41c e195296 701c41c 5d15c84 701c41c e195296 701c41c e195296 701c41c 5d15c84 701c41c 23f8201 701c41c 5d15c84 701c41c 23f8201 701c41c 2a4d2b6 701c41c 5d15c84 701c41c 23f8201 5d15c84 bb95205 701c41c bb95205 701c41c bb95205 2fa8d09 bb95205 701c41c bb95205 701c41c bb95205 f8c307f bb95205 701c41c bb95205 701c41c bb95205 701c41c bb95205 701c41c bb95205 701c41c bb95205 701c41c bb95205 701c41c bb95205 701c41c bb95205 701c41c 7656238 bb95205 fe5ff1b bb95205 701c41c bb95205 fe5ff1b bb95205 701c41c bb95205 701c41c 8904c8e bb95205 fe5ff1b bb95205 701c41c 8904c8e 701c41c bb95205 701c41c bb95205 701c41c c5a0831 bb95205 ebd5f48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import pandas as pd
from datasets import load_dataset, get_dataset_split_names
from huggingface_hub import HfApi
import os
import pathlib
import uuid
# --- Embedding Atlas Imports ---
from embedding_atlas.data_source import DataSource
from embedding_atlas.server import make_server
from embedding_atlas.projection import compute_text_projection
from embedding_atlas.utils import Hasher
# --- Helper function from embedding_atlas/cli.py ---
def find_column_name(existing_names, candidate):
"""Finds a unique column name, appending '_1', '_2', etc. if the candidate name already exists."""
if candidate not in existing_names:
return candidate
else:
index = 1
while True:
s = f"{candidate}_{index}"
if s not in existing_names:
return s
index += 1
# --- Hugging Face API Helpers for Dynamic UI ---
hf_api = HfApi()
def get_user_datasets(username: str):
"""Fetches all public datasets for a given username or organization."""
if not username:
return gr.update(choices=[], value=None, interactive=False)
try:
datasets = hf_api.list_datasets(author=username, full=True)
dataset_ids = [d.id for d in datasets if not d.private]
return gr.update(choices=sorted(dataset_ids), value=None, interactive=True)
except Exception as e:
gr.Warning(f"Could not fetch datasets for user '{username}'. Error: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_dataset_splits(dataset_id: str):
"""Gets all available splits for a selected dataset."""
if not dataset_id:
return gr.update(choices=[], value=None, interactive=False)
try:
splits = get_dataset_split_names(dataset_id)
return gr.update(choices=splits, value=splits[0] if splits else None, interactive=True)
except Exception as e:
gr.Warning(f"Could not fetch splits for dataset '{dataset_id}'. Error: {e}")
return gr.update(choices=[], value=None, interactive=False)
def get_split_columns(dataset_id: str, split: str):
"""Gets all columns for a selected split by loading its metadata."""
if not dataset_id or not split:
return gr.update(choices=[], value=None, interactive=False)
try:
# --- THIS IS THE FIX ---
# Instead of iterating, we get the .features property from the dataset info.
# This is much faster and more reliable as it only fetches metadata.
features = load_dataset(dataset_id, split=split, streaming=True).features
columns = list(features.keys())
# Heuristically find the best text column
preferred_cols = ['text', 'content', 'instruction', 'question', 'document', 'prompt']
best_col = next((col for col in preferred_cols if col in columns), columns[0] if columns else None)
return gr.update(choices=columns, value=best_col, interactive=True)
except Exception as e:
# Adding a print statement here can help debug in the terminal
print(f"Error fetching columns for {dataset_id}/{split}: {e}")
gr.Warning(f"Could not fetch columns for split '{split}'. Check if the dataset requires special access. Error: {e}")
return gr.update(choices=[], value=None, interactive=False)
# --- Main Atlas Generation Logic ---
def generate_atlas(
dataset_name: str,
split: str,
text_column: str,
sample_size: int,
model_name: str,
umap_neighbors: int,
umap_min_dist: float,
progress=gr.Progress(track_tqdm=True)
):
"""
Loads data, computes embeddings, and serves the Embedding Atlas UI.
"""
if not all([dataset_name, split, text_column]):
raise gr.Error("Please ensure a Dataset, Split, and Text Column are selected.")
progress(0, desc=f"Loading dataset '{dataset_name}' [{split}]...")
try:
dataset = load_dataset(dataset_name, split=split)
df = dataset.to_pandas()
except Exception as e:
raise gr.Error(f"Failed to load data. Error: {e}")
if sample_size > 0 and sample_size < len(df):
progress(0.1, desc=f"Sampling {sample_size} rows...")
df = df.sample(n=sample_size, random_state=42).reset_index(drop=True)
if text_column not in df.columns:
raise gr.Error(f"Column '{text_column}' not found. Please select a valid column.")
progress(0.2, desc="Computing embeddings and UMAP. This may take a while...")
x_col = find_column_name(df.columns, "projection_x")
y_col = find_column_name(df.columns, "projection_y")
neighbors_col = find_column_name(df.columns, "__neighbors")
try:
compute_text_projection(
df, text_column, x=x_col, y=y_col, neighbors=neighbors_col, model=model_name,
umap_args={"n_neighbors": umap_neighbors, "min_dist": umap_min_dist, "metric": "cosine", "random_state": 42},
)
except Exception as e:
raise gr.Error(f"Failed to compute embeddings. Check model name or try a smaller sample. Error: {e}")
progress(0.8, desc="Preparing Atlas data source...")
id_col = find_column_name(df.columns, "_row_index")
df[id_col] = range(df.shape[0])
metadata = {
"columns": {"id": id_col, "text": text_column, "embedding": {"x": x_col, "y": y_col}, "neighbors": neighbors_col},
}
hasher = Hasher()
hasher.update(f"{dataset_name}-{split}-{text_column}-{sample_size}-{model_name}")
identifier = hasher.hexdigest()
atlas_dataset = DataSource(identifier, df, metadata)
progress(0.9, desc="Mounting visualization UI...")
static_path = str((pathlib.Path(__import__('embedding_atlas').__file__).parent / "static").resolve())
mount_path = f"/{uuid.uuid4().hex}"
atlas_app = make_server(atlas_dataset, static_path=static_path, duckdb_uri="wasm")
app.mount_gradio_app(atlas_app, path=mount_path)
progress(1.0, desc="Done!")
iframe_html = f"<iframe src='{mount_path}' width='100%' height='800px' frameborder='0'></iframe>"
return gr.HTML(iframe_html)
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="Embedding Atlas Explorer") as app:
gr.Markdown("# Embedding Atlas Explorer")
gr.Markdown(
"Interactively select and visualize any text-based dataset from the Hugging Face Hub. "
"The app computes embeddings and projects them into a 2D map for exploration."
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Select Data")
hf_user_input = gr.Textbox(label="Hugging Face User or Org Name", value="Trendyol", placeholder="e.g., 'gradio' or 'google'")
dataset_input = gr.Dropdown(label="Select a Dataset", interactive=False)
split_input = gr.Dropdown(label="Select a Split", interactive=False)
text_column_input = gr.Dropdown(label="Select a Text Column", interactive=False)
gr.Markdown("### 2. Configure Visualization")
sample_size_input = gr.Slider(label="Number of Samples", minimum=0, maximum=10000, value=2000, step=100)
with gr.Accordion("Advanced Settings", open=False):
model_input = gr.Dropdown(label="Embedding Model", choices=["all-MiniLM-L6-v2", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"], value="all-MiniLM-L6-v2")
umap_neighbors_input = gr.Slider(label="UMAP Neighbors", minimum=2, maximum=100, value=15, step=1, info="Controls local vs. global structure.")
umap_min_dist_input = gr.Slider(label="UMAP Min Distance", minimum=0.0, maximum=0.99, value=0.1, step=0.01, info="Controls how tightly points are packed.")
generate_button = gr.Button("Generate Atlas", variant="primary")
with gr.Column(scale=3):
gr.Markdown("### 3. Explore Atlas")
output_html = gr.HTML("<div style='display:flex; justify-content:center; align-items:center; height:800px; border: 1px solid #ddd; border-radius: 5px;'><p>Atlas will be displayed here after generation.</p></div>")
# --- Chained Event Listeners for Dynamic UI ---
hf_user_input.submit(
fn=get_user_datasets,
inputs=[hf_user_input],
outputs=[dataset_input]
)
dataset_input.select(
fn=get_dataset_splits,
inputs=[dataset_input],
outputs=[split_input]
)
split_input.select(
fn=get_split_columns,
inputs=[dataset_input, split_input],
outputs=[text_column_input]
)
# --- Button Click Event ---
generate_button.click(
fn=generate_atlas,
inputs=[
dataset_input, split_input, text_column_input,
sample_size_input, model_input, umap_neighbors_input, umap_min_dist_input
],
outputs=[output_html],
)
# Load initial example data on app load
app.load(fn=get_user_datasets, inputs=[hf_user_input], outputs=[dataset_input])
if __name__ == "__main__":
app.launch(debug=True) |