Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ embeddings = VoyageAIEmbeddings(voyage_api_key=voyage_api_key, model="voyage-law
|
|
26 |
# 🔹 Query Expansion using GPT-4
|
27 |
def expand_query(query):
|
28 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
|
29 |
-
prompt = f"Rewrite this vague query into a more specific one:\nQuery: {query}\nSpecific Query:"
|
30 |
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
|
31 |
return refined_query if refined_query else query
|
32 |
|
@@ -46,7 +46,7 @@ def hybrid_search(query, user_groups, index_name="briefmeta", min_score=0.01, fe
|
|
46 |
doc_id, doc_groups = doc.metadata.get("id"), doc.metadata.get("groups", [])
|
47 |
semantic_score = float(doc.metadata.get("score", 0))
|
48 |
keyword_score = float(keyword_scores[i])
|
49 |
-
final_score = 0.
|
50 |
|
51 |
if doc_id not in seen_ids and any(group in user_groups for group in doc_groups) and final_score > min_score:
|
52 |
seen_ids.add(doc_id)
|
@@ -85,17 +85,17 @@ def rerank(query, context):
|
|
85 |
return final_reranked
|
86 |
|
87 |
# 🔹 Intelligent Search Summary Generator
|
88 |
-
def generate_search_summary(search_results, query):
|
89 |
if not search_results:
|
90 |
return "No relevant documents found. Try refining your query."
|
91 |
|
92 |
-
num_results = len(
|
93 |
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
|
94 |
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
|
95 |
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
|
96 |
|
97 |
summary_prompt = f"""
|
98 |
-
Generate a concise 1-3 sentence summary:
|
99 |
- User Query: "{query}"
|
100 |
- Matching Documents: {num_results} found
|
101 |
- Titles: {", ".join(set(doc_titles))}
|
@@ -143,7 +143,7 @@ def complete_workflow(query, user_groups, index_name="briefmeta"):
|
|
143 |
|
144 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
|
145 |
formatted_titles = " " + "\n".join(document_titles)
|
146 |
-
intelligent_search_summary = generate_search_summary(context_data, refined_query)
|
147 |
|
148 |
results = {
|
149 |
"results": [
|
|
|
26 |
# 🔹 Query Expansion using GPT-4
|
27 |
def expand_query(query):
|
28 |
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
|
29 |
+
prompt = f"Rewrite this vague query for searching a document into a more specific one:\nQuery: {query}\nSpecific Query:"
|
30 |
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
|
31 |
return refined_query if refined_query else query
|
32 |
|
|
|
46 |
doc_id, doc_groups = doc.metadata.get("id"), doc.metadata.get("groups", [])
|
47 |
semantic_score = float(doc.metadata.get("score", 0))
|
48 |
keyword_score = float(keyword_scores[i])
|
49 |
+
final_score = 0.65 * semantic_score + 0.35 * keyword_score # Hybrid score
|
50 |
|
51 |
if doc_id not in seen_ids and any(group in user_groups for group in doc_groups) and final_score > min_score:
|
52 |
seen_ids.add(doc_id)
|
|
|
85 |
return final_reranked
|
86 |
|
87 |
# 🔹 Intelligent Search Summary Generator
|
88 |
+
def generate_search_summary(search_results, document_titles, query):
|
89 |
if not search_results:
|
90 |
return "No relevant documents found. Try refining your query."
|
91 |
|
92 |
+
num_results = len(document_titles)
|
93 |
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
|
94 |
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
|
95 |
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
|
96 |
|
97 |
summary_prompt = f"""
|
98 |
+
Generate a concise 1-3 sentence summary for the search results found:
|
99 |
- User Query: "{query}"
|
100 |
- Matching Documents: {num_results} found
|
101 |
- Titles: {", ".join(set(doc_titles))}
|
|
|
143 |
|
144 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
|
145 |
formatted_titles = " " + "\n".join(document_titles)
|
146 |
+
intelligent_search_summary = generate_search_summary(context_data, document_titles, refined_query)
|
147 |
|
148 |
results = {
|
149 |
"results": [
|