Spaces:
Running
on
Zero
Running
on
Zero
Delete replace_bg/model/replace_bg_model_controlnet.py
Browse files
replace_bg/model/replace_bg_model_controlnet.py
DELETED
@@ -1,872 +0,0 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
from dataclasses import dataclass
|
15 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
-
|
17 |
-
import torch
|
18 |
-
from torch import nn
|
19 |
-
from torch.nn import functional as F
|
20 |
-
|
21 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
-
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
23 |
-
from diffusers.utils import BaseOutput, logging
|
24 |
-
from diffusers.models.attention_processor import (
|
25 |
-
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
-
CROSS_ATTENTION_PROCESSORS,
|
27 |
-
AttentionProcessor,
|
28 |
-
AttnAddedKVProcessor,
|
29 |
-
AttnProcessor,
|
30 |
-
)
|
31 |
-
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32 |
-
from diffusers.models.modeling_utils import ModelMixin
|
33 |
-
from diffusers.models.unets.unet_2d_blocks import (
|
34 |
-
CrossAttnDownBlock2D,
|
35 |
-
DownBlock2D,
|
36 |
-
UNetMidBlock2D,
|
37 |
-
UNetMidBlock2DCrossAttn,
|
38 |
-
get_down_block,
|
39 |
-
)
|
40 |
-
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
41 |
-
|
42 |
-
|
43 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
44 |
-
|
45 |
-
|
46 |
-
@dataclass
|
47 |
-
class ControlNetOutput(BaseOutput):
|
48 |
-
"""
|
49 |
-
The output of [`ControlNetModel`].
|
50 |
-
|
51 |
-
Args:
|
52 |
-
down_block_res_samples (`tuple[torch.Tensor]`):
|
53 |
-
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
54 |
-
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
55 |
-
used to condition the original UNet's downsampling activations.
|
56 |
-
mid_down_block_re_sample (`torch.Tensor`):
|
57 |
-
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
58 |
-
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
59 |
-
Output can be used to condition the original UNet's middle block activation.
|
60 |
-
"""
|
61 |
-
|
62 |
-
down_block_res_samples: Tuple[torch.Tensor]
|
63 |
-
mid_block_res_sample: torch.Tensor
|
64 |
-
|
65 |
-
|
66 |
-
class ControlNetConditioningEmbedding(nn.Module):
|
67 |
-
"""
|
68 |
-
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
69 |
-
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
70 |
-
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
71 |
-
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
72 |
-
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
73 |
-
model) to encode image-space conditions ... into feature maps ..."
|
74 |
-
"""
|
75 |
-
|
76 |
-
def __init__(
|
77 |
-
self,
|
78 |
-
conditioning_embedding_channels: int,
|
79 |
-
conditioning_channels: int = 5, # Bria: update to 5
|
80 |
-
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
81 |
-
):
|
82 |
-
super().__init__()
|
83 |
-
|
84 |
-
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
85 |
-
|
86 |
-
self.blocks = nn.ModuleList([])
|
87 |
-
|
88 |
-
for i in range(len(block_out_channels) - 1):
|
89 |
-
channel_in = block_out_channels[i]
|
90 |
-
channel_out = block_out_channels[i + 1]
|
91 |
-
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
92 |
-
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1)) # Bria: update stride to 1
|
93 |
-
|
94 |
-
self.conv_out = zero_module(
|
95 |
-
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
96 |
-
)
|
97 |
-
|
98 |
-
def forward(self, conditioning):
|
99 |
-
embedding = self.conv_in(conditioning)
|
100 |
-
embedding = F.silu(embedding)
|
101 |
-
|
102 |
-
for block in self.blocks:
|
103 |
-
embedding = block(embedding)
|
104 |
-
embedding = F.silu(embedding)
|
105 |
-
|
106 |
-
embedding = self.conv_out(embedding)
|
107 |
-
|
108 |
-
return embedding
|
109 |
-
|
110 |
-
|
111 |
-
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
112 |
-
"""
|
113 |
-
A ControlNet model.
|
114 |
-
|
115 |
-
Args:
|
116 |
-
in_channels (`int`, defaults to 4):
|
117 |
-
The number of channels in the input sample.
|
118 |
-
flip_sin_to_cos (`bool`, defaults to `True`):
|
119 |
-
Whether to flip the sin to cos in the time embedding.
|
120 |
-
freq_shift (`int`, defaults to 0):
|
121 |
-
The frequency shift to apply to the time embedding.
|
122 |
-
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
123 |
-
The tuple of downsample blocks to use.
|
124 |
-
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
125 |
-
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
126 |
-
The tuple of output channels for each block.
|
127 |
-
layers_per_block (`int`, defaults to 2):
|
128 |
-
The number of layers per block.
|
129 |
-
downsample_padding (`int`, defaults to 1):
|
130 |
-
The padding to use for the downsampling convolution.
|
131 |
-
mid_block_scale_factor (`float`, defaults to 1):
|
132 |
-
The scale factor to use for the mid block.
|
133 |
-
act_fn (`str`, defaults to "silu"):
|
134 |
-
The activation function to use.
|
135 |
-
norm_num_groups (`int`, *optional*, defaults to 32):
|
136 |
-
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
137 |
-
in post-processing.
|
138 |
-
norm_eps (`float`, defaults to 1e-5):
|
139 |
-
The epsilon to use for the normalization.
|
140 |
-
cross_attention_dim (`int`, defaults to 1280):
|
141 |
-
The dimension of the cross attention features.
|
142 |
-
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
143 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
144 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
145 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
146 |
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
147 |
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
148 |
-
dimension to `cross_attention_dim`.
|
149 |
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
150 |
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
151 |
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
152 |
-
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
153 |
-
The dimension of the attention heads.
|
154 |
-
use_linear_projection (`bool`, defaults to `False`):
|
155 |
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
156 |
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
157 |
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
158 |
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
159 |
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
160 |
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
161 |
-
num_class_embeds (`int`, *optional*, defaults to 0):
|
162 |
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
163 |
-
class conditioning with `class_embed_type` equal to `None`.
|
164 |
-
upcast_attention (`bool`, defaults to `False`):
|
165 |
-
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
166 |
-
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
167 |
-
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
168 |
-
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
169 |
-
`class_embed_type="projection"`.
|
170 |
-
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
171 |
-
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
172 |
-
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
173 |
-
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
174 |
-
global_pool_conditions (`bool`, defaults to `False`):
|
175 |
-
TODO(Patrick) - unused parameter.
|
176 |
-
addition_embed_type_num_heads (`int`, defaults to 64):
|
177 |
-
The number of heads to use for the `TextTimeEmbedding` layer.
|
178 |
-
"""
|
179 |
-
|
180 |
-
_supports_gradient_checkpointing = True
|
181 |
-
|
182 |
-
@register_to_config
|
183 |
-
def __init__(
|
184 |
-
self,
|
185 |
-
in_channels: int = 4,
|
186 |
-
conditioning_channels: int = 3,
|
187 |
-
flip_sin_to_cos: bool = True,
|
188 |
-
freq_shift: int = 0,
|
189 |
-
down_block_types: Tuple[str, ...] = (
|
190 |
-
"CrossAttnDownBlock2D",
|
191 |
-
"CrossAttnDownBlock2D",
|
192 |
-
"CrossAttnDownBlock2D",
|
193 |
-
"DownBlock2D",
|
194 |
-
),
|
195 |
-
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
196 |
-
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
197 |
-
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
198 |
-
layers_per_block: int = 2,
|
199 |
-
downsample_padding: int = 1,
|
200 |
-
mid_block_scale_factor: float = 1,
|
201 |
-
act_fn: str = "silu",
|
202 |
-
norm_num_groups: Optional[int] = 32,
|
203 |
-
norm_eps: float = 1e-5,
|
204 |
-
cross_attention_dim: int = 1280,
|
205 |
-
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
206 |
-
encoder_hid_dim: Optional[int] = None,
|
207 |
-
encoder_hid_dim_type: Optional[str] = None,
|
208 |
-
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
209 |
-
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
210 |
-
use_linear_projection: bool = False,
|
211 |
-
class_embed_type: Optional[str] = None,
|
212 |
-
addition_embed_type: Optional[str] = None,
|
213 |
-
addition_time_embed_dim: Optional[int] = None,
|
214 |
-
num_class_embeds: Optional[int] = None,
|
215 |
-
upcast_attention: bool = False,
|
216 |
-
resnet_time_scale_shift: str = "default",
|
217 |
-
projection_class_embeddings_input_dim: Optional[int] = None,
|
218 |
-
controlnet_conditioning_channel_order: str = "rgb",
|
219 |
-
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
220 |
-
global_pool_conditions: bool = False,
|
221 |
-
addition_embed_type_num_heads: int = 64,
|
222 |
-
):
|
223 |
-
super().__init__()
|
224 |
-
|
225 |
-
# If `num_attention_heads` is not defined (which is the case for most models)
|
226 |
-
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
227 |
-
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
228 |
-
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
229 |
-
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
230 |
-
# which is why we correct for the naming here.
|
231 |
-
num_attention_heads = num_attention_heads or attention_head_dim
|
232 |
-
|
233 |
-
# Check inputs
|
234 |
-
if len(block_out_channels) != len(down_block_types):
|
235 |
-
raise ValueError(
|
236 |
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
237 |
-
)
|
238 |
-
|
239 |
-
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
240 |
-
raise ValueError(
|
241 |
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
242 |
-
)
|
243 |
-
|
244 |
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
245 |
-
raise ValueError(
|
246 |
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
247 |
-
)
|
248 |
-
|
249 |
-
if isinstance(transformer_layers_per_block, int):
|
250 |
-
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
251 |
-
|
252 |
-
# input
|
253 |
-
conv_in_kernel = 3
|
254 |
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
255 |
-
self.conv_in = nn.Conv2d(
|
256 |
-
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
257 |
-
)
|
258 |
-
|
259 |
-
# time
|
260 |
-
time_embed_dim = block_out_channels[0] * 4
|
261 |
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
262 |
-
timestep_input_dim = block_out_channels[0]
|
263 |
-
self.time_embedding = TimestepEmbedding(
|
264 |
-
timestep_input_dim,
|
265 |
-
time_embed_dim,
|
266 |
-
act_fn=act_fn,
|
267 |
-
)
|
268 |
-
|
269 |
-
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
270 |
-
encoder_hid_dim_type = "text_proj"
|
271 |
-
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
272 |
-
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
273 |
-
|
274 |
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
275 |
-
raise ValueError(
|
276 |
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
277 |
-
)
|
278 |
-
|
279 |
-
if encoder_hid_dim_type == "text_proj":
|
280 |
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
281 |
-
elif encoder_hid_dim_type == "text_image_proj":
|
282 |
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
283 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
284 |
-
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
285 |
-
self.encoder_hid_proj = TextImageProjection(
|
286 |
-
text_embed_dim=encoder_hid_dim,
|
287 |
-
image_embed_dim=cross_attention_dim,
|
288 |
-
cross_attention_dim=cross_attention_dim,
|
289 |
-
)
|
290 |
-
|
291 |
-
elif encoder_hid_dim_type is not None:
|
292 |
-
raise ValueError(
|
293 |
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
294 |
-
)
|
295 |
-
else:
|
296 |
-
self.encoder_hid_proj = None
|
297 |
-
|
298 |
-
# class embedding
|
299 |
-
if class_embed_type is None and num_class_embeds is not None:
|
300 |
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
301 |
-
elif class_embed_type == "timestep":
|
302 |
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
303 |
-
elif class_embed_type == "identity":
|
304 |
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
305 |
-
elif class_embed_type == "projection":
|
306 |
-
if projection_class_embeddings_input_dim is None:
|
307 |
-
raise ValueError(
|
308 |
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
309 |
-
)
|
310 |
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
311 |
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
312 |
-
# 2. it projects from an arbitrary input dimension.
|
313 |
-
#
|
314 |
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
315 |
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
316 |
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
317 |
-
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
318 |
-
else:
|
319 |
-
self.class_embedding = None
|
320 |
-
|
321 |
-
if addition_embed_type == "text":
|
322 |
-
if encoder_hid_dim is not None:
|
323 |
-
text_time_embedding_from_dim = encoder_hid_dim
|
324 |
-
else:
|
325 |
-
text_time_embedding_from_dim = cross_attention_dim
|
326 |
-
|
327 |
-
self.add_embedding = TextTimeEmbedding(
|
328 |
-
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
329 |
-
)
|
330 |
-
elif addition_embed_type == "text_image":
|
331 |
-
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
332 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
333 |
-
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
334 |
-
self.add_embedding = TextImageTimeEmbedding(
|
335 |
-
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
336 |
-
)
|
337 |
-
elif addition_embed_type == "text_time":
|
338 |
-
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
339 |
-
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
340 |
-
|
341 |
-
elif addition_embed_type is not None:
|
342 |
-
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
343 |
-
|
344 |
-
# control net conditioning embedding
|
345 |
-
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
346 |
-
conditioning_embedding_channels=block_out_channels[0],
|
347 |
-
block_out_channels=conditioning_embedding_out_channels,
|
348 |
-
conditioning_channels=conditioning_channels,
|
349 |
-
)
|
350 |
-
|
351 |
-
self.down_blocks = nn.ModuleList([])
|
352 |
-
self.controlnet_down_blocks = nn.ModuleList([])
|
353 |
-
|
354 |
-
if isinstance(only_cross_attention, bool):
|
355 |
-
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
356 |
-
|
357 |
-
if isinstance(attention_head_dim, int):
|
358 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
359 |
-
|
360 |
-
if isinstance(num_attention_heads, int):
|
361 |
-
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
362 |
-
|
363 |
-
# down
|
364 |
-
output_channel = block_out_channels[0]
|
365 |
-
|
366 |
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
367 |
-
controlnet_block = zero_module(controlnet_block)
|
368 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
369 |
-
|
370 |
-
for i, down_block_type in enumerate(down_block_types):
|
371 |
-
input_channel = output_channel
|
372 |
-
output_channel = block_out_channels[i]
|
373 |
-
is_final_block = i == len(block_out_channels) - 1
|
374 |
-
|
375 |
-
down_block = get_down_block(
|
376 |
-
down_block_type,
|
377 |
-
num_layers=layers_per_block,
|
378 |
-
transformer_layers_per_block=transformer_layers_per_block[i],
|
379 |
-
in_channels=input_channel,
|
380 |
-
out_channels=output_channel,
|
381 |
-
temb_channels=time_embed_dim,
|
382 |
-
add_downsample=not is_final_block,
|
383 |
-
resnet_eps=norm_eps,
|
384 |
-
resnet_act_fn=act_fn,
|
385 |
-
resnet_groups=norm_num_groups,
|
386 |
-
cross_attention_dim=cross_attention_dim,
|
387 |
-
num_attention_heads=num_attention_heads[i],
|
388 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
389 |
-
downsample_padding=downsample_padding,
|
390 |
-
use_linear_projection=use_linear_projection,
|
391 |
-
only_cross_attention=only_cross_attention[i],
|
392 |
-
upcast_attention=upcast_attention,
|
393 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
394 |
-
)
|
395 |
-
self.down_blocks.append(down_block)
|
396 |
-
|
397 |
-
for _ in range(layers_per_block):
|
398 |
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
399 |
-
controlnet_block = zero_module(controlnet_block)
|
400 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
401 |
-
|
402 |
-
if not is_final_block:
|
403 |
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
404 |
-
controlnet_block = zero_module(controlnet_block)
|
405 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
406 |
-
|
407 |
-
# mid
|
408 |
-
mid_block_channel = block_out_channels[-1]
|
409 |
-
|
410 |
-
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
411 |
-
controlnet_block = zero_module(controlnet_block)
|
412 |
-
self.controlnet_mid_block = controlnet_block
|
413 |
-
|
414 |
-
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
415 |
-
self.mid_block = UNetMidBlock2DCrossAttn(
|
416 |
-
transformer_layers_per_block=transformer_layers_per_block[-1],
|
417 |
-
in_channels=mid_block_channel,
|
418 |
-
temb_channels=time_embed_dim,
|
419 |
-
resnet_eps=norm_eps,
|
420 |
-
resnet_act_fn=act_fn,
|
421 |
-
output_scale_factor=mid_block_scale_factor,
|
422 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
423 |
-
cross_attention_dim=cross_attention_dim,
|
424 |
-
num_attention_heads=num_attention_heads[-1],
|
425 |
-
resnet_groups=norm_num_groups,
|
426 |
-
use_linear_projection=use_linear_projection,
|
427 |
-
upcast_attention=upcast_attention,
|
428 |
-
)
|
429 |
-
elif mid_block_type == "UNetMidBlock2D":
|
430 |
-
self.mid_block = UNetMidBlock2D(
|
431 |
-
in_channels=block_out_channels[-1],
|
432 |
-
temb_channels=time_embed_dim,
|
433 |
-
num_layers=0,
|
434 |
-
resnet_eps=norm_eps,
|
435 |
-
resnet_act_fn=act_fn,
|
436 |
-
output_scale_factor=mid_block_scale_factor,
|
437 |
-
resnet_groups=norm_num_groups,
|
438 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
439 |
-
add_attention=False,
|
440 |
-
)
|
441 |
-
else:
|
442 |
-
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
443 |
-
|
444 |
-
@classmethod
|
445 |
-
def from_unet(
|
446 |
-
cls,
|
447 |
-
unet: UNet2DConditionModel,
|
448 |
-
controlnet_conditioning_channel_order: str = "rgb",
|
449 |
-
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
450 |
-
load_weights_from_unet: bool = True,
|
451 |
-
conditioning_channels: int = 3,
|
452 |
-
):
|
453 |
-
r"""
|
454 |
-
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
455 |
-
|
456 |
-
Parameters:
|
457 |
-
unet (`UNet2DConditionModel`):
|
458 |
-
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
459 |
-
where applicable.
|
460 |
-
"""
|
461 |
-
transformer_layers_per_block = (
|
462 |
-
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
463 |
-
)
|
464 |
-
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
465 |
-
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
466 |
-
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
467 |
-
addition_time_embed_dim = (
|
468 |
-
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
469 |
-
)
|
470 |
-
|
471 |
-
controlnet = cls(
|
472 |
-
encoder_hid_dim=encoder_hid_dim,
|
473 |
-
encoder_hid_dim_type=encoder_hid_dim_type,
|
474 |
-
addition_embed_type=addition_embed_type,
|
475 |
-
addition_time_embed_dim=addition_time_embed_dim,
|
476 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
477 |
-
in_channels=unet.config.in_channels,
|
478 |
-
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
479 |
-
freq_shift=unet.config.freq_shift,
|
480 |
-
down_block_types=unet.config.down_block_types,
|
481 |
-
only_cross_attention=unet.config.only_cross_attention,
|
482 |
-
block_out_channels=unet.config.block_out_channels,
|
483 |
-
layers_per_block=unet.config.layers_per_block,
|
484 |
-
downsample_padding=unet.config.downsample_padding,
|
485 |
-
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
486 |
-
act_fn=unet.config.act_fn,
|
487 |
-
norm_num_groups=unet.config.norm_num_groups,
|
488 |
-
norm_eps=unet.config.norm_eps,
|
489 |
-
cross_attention_dim=unet.config.cross_attention_dim,
|
490 |
-
attention_head_dim=unet.config.attention_head_dim,
|
491 |
-
num_attention_heads=unet.config.num_attention_heads,
|
492 |
-
use_linear_projection=unet.config.use_linear_projection,
|
493 |
-
class_embed_type=unet.config.class_embed_type,
|
494 |
-
num_class_embeds=unet.config.num_class_embeds,
|
495 |
-
upcast_attention=unet.config.upcast_attention,
|
496 |
-
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
497 |
-
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
498 |
-
mid_block_type=unet.config.mid_block_type,
|
499 |
-
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
500 |
-
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
501 |
-
conditioning_channels=conditioning_channels,
|
502 |
-
)
|
503 |
-
|
504 |
-
if load_weights_from_unet:
|
505 |
-
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
506 |
-
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
507 |
-
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
508 |
-
|
509 |
-
if controlnet.class_embedding:
|
510 |
-
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
511 |
-
|
512 |
-
if hasattr(controlnet, "add_embedding"):
|
513 |
-
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
514 |
-
|
515 |
-
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
516 |
-
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
517 |
-
|
518 |
-
return controlnet
|
519 |
-
|
520 |
-
@property
|
521 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
522 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
523 |
-
r"""
|
524 |
-
Returns:
|
525 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
526 |
-
indexed by its weight name.
|
527 |
-
"""
|
528 |
-
# set recursively
|
529 |
-
processors = {}
|
530 |
-
|
531 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
532 |
-
if hasattr(module, "get_processor"):
|
533 |
-
processors[f"{name}.processor"] = module.get_processor()
|
534 |
-
|
535 |
-
for sub_name, child in module.named_children():
|
536 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
537 |
-
|
538 |
-
return processors
|
539 |
-
|
540 |
-
for name, module in self.named_children():
|
541 |
-
fn_recursive_add_processors(name, module, processors)
|
542 |
-
|
543 |
-
return processors
|
544 |
-
|
545 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
546 |
-
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
547 |
-
r"""
|
548 |
-
Sets the attention processor to use to compute attention.
|
549 |
-
|
550 |
-
Parameters:
|
551 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
552 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
553 |
-
for **all** `Attention` layers.
|
554 |
-
|
555 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
556 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
557 |
-
|
558 |
-
"""
|
559 |
-
count = len(self.attn_processors.keys())
|
560 |
-
|
561 |
-
if isinstance(processor, dict) and len(processor) != count:
|
562 |
-
raise ValueError(
|
563 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
564 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
565 |
-
)
|
566 |
-
|
567 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
568 |
-
if hasattr(module, "set_processor"):
|
569 |
-
if not isinstance(processor, dict):
|
570 |
-
module.set_processor(processor)
|
571 |
-
else:
|
572 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
573 |
-
|
574 |
-
for sub_name, child in module.named_children():
|
575 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
576 |
-
|
577 |
-
for name, module in self.named_children():
|
578 |
-
fn_recursive_attn_processor(name, module, processor)
|
579 |
-
|
580 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
581 |
-
def set_default_attn_processor(self):
|
582 |
-
"""
|
583 |
-
Disables custom attention processors and sets the default attention implementation.
|
584 |
-
"""
|
585 |
-
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
586 |
-
processor = AttnAddedKVProcessor()
|
587 |
-
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
588 |
-
processor = AttnProcessor()
|
589 |
-
else:
|
590 |
-
raise ValueError(
|
591 |
-
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
592 |
-
)
|
593 |
-
|
594 |
-
self.set_attn_processor(processor)
|
595 |
-
|
596 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
597 |
-
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
598 |
-
r"""
|
599 |
-
Enable sliced attention computation.
|
600 |
-
|
601 |
-
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
602 |
-
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
603 |
-
|
604 |
-
Args:
|
605 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
606 |
-
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
607 |
-
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
608 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
609 |
-
must be a multiple of `slice_size`.
|
610 |
-
"""
|
611 |
-
sliceable_head_dims = []
|
612 |
-
|
613 |
-
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
614 |
-
if hasattr(module, "set_attention_slice"):
|
615 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
616 |
-
|
617 |
-
for child in module.children():
|
618 |
-
fn_recursive_retrieve_sliceable_dims(child)
|
619 |
-
|
620 |
-
# retrieve number of attention layers
|
621 |
-
for module in self.children():
|
622 |
-
fn_recursive_retrieve_sliceable_dims(module)
|
623 |
-
|
624 |
-
num_sliceable_layers = len(sliceable_head_dims)
|
625 |
-
|
626 |
-
if slice_size == "auto":
|
627 |
-
# half the attention head size is usually a good trade-off between
|
628 |
-
# speed and memory
|
629 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
630 |
-
elif slice_size == "max":
|
631 |
-
# make smallest slice possible
|
632 |
-
slice_size = num_sliceable_layers * [1]
|
633 |
-
|
634 |
-
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
635 |
-
|
636 |
-
if len(slice_size) != len(sliceable_head_dims):
|
637 |
-
raise ValueError(
|
638 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
639 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
640 |
-
)
|
641 |
-
|
642 |
-
for i in range(len(slice_size)):
|
643 |
-
size = slice_size[i]
|
644 |
-
dim = sliceable_head_dims[i]
|
645 |
-
if size is not None and size > dim:
|
646 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
647 |
-
|
648 |
-
# Recursively walk through all the children.
|
649 |
-
# Any children which exposes the set_attention_slice method
|
650 |
-
# gets the message
|
651 |
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
652 |
-
if hasattr(module, "set_attention_slice"):
|
653 |
-
module.set_attention_slice(slice_size.pop())
|
654 |
-
|
655 |
-
for child in module.children():
|
656 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
657 |
-
|
658 |
-
reversed_slice_size = list(reversed(slice_size))
|
659 |
-
for module in self.children():
|
660 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
661 |
-
|
662 |
-
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
663 |
-
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
664 |
-
module.gradient_checkpointing = value
|
665 |
-
|
666 |
-
def forward(
|
667 |
-
self,
|
668 |
-
sample: torch.Tensor,
|
669 |
-
timestep: Union[torch.Tensor, float, int],
|
670 |
-
encoder_hidden_states: torch.Tensor,
|
671 |
-
controlnet_cond: torch.Tensor,
|
672 |
-
conditioning_scale: float = 1.0,
|
673 |
-
class_labels: Optional[torch.Tensor] = None,
|
674 |
-
timestep_cond: Optional[torch.Tensor] = None,
|
675 |
-
attention_mask: Optional[torch.Tensor] = None,
|
676 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
677 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
678 |
-
guess_mode: bool = False,
|
679 |
-
return_dict: bool = True,
|
680 |
-
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
681 |
-
"""
|
682 |
-
The [`ControlNetModel`] forward method.
|
683 |
-
|
684 |
-
Args:
|
685 |
-
sample (`torch.Tensor`):
|
686 |
-
The noisy input tensor.
|
687 |
-
timestep (`Union[torch.Tensor, float, int]`):
|
688 |
-
The number of timesteps to denoise an input.
|
689 |
-
encoder_hidden_states (`torch.Tensor`):
|
690 |
-
The encoder hidden states.
|
691 |
-
controlnet_cond (`torch.Tensor`):
|
692 |
-
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
693 |
-
conditioning_scale (`float`, defaults to `1.0`):
|
694 |
-
The scale factor for ControlNet outputs.
|
695 |
-
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
696 |
-
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
697 |
-
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
698 |
-
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
699 |
-
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
700 |
-
embeddings.
|
701 |
-
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
702 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
703 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
704 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
705 |
-
added_cond_kwargs (`dict`):
|
706 |
-
Additional conditions for the Stable Diffusion XL UNet.
|
707 |
-
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
708 |
-
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
709 |
-
guess_mode (`bool`, defaults to `False`):
|
710 |
-
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
711 |
-
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
712 |
-
return_dict (`bool`, defaults to `True`):
|
713 |
-
Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain
|
714 |
-
tuple.
|
715 |
-
|
716 |
-
Returns:
|
717 |
-
[`~models.controlnets.controlnet.ControlNetOutput`] **or** `tuple`:
|
718 |
-
If `return_dict` is `True`, a [`~models.controlnets.controlnet.ControlNetOutput`] is returned,
|
719 |
-
otherwise a tuple is returned where the first element is the sample tensor.
|
720 |
-
"""
|
721 |
-
# check channel order
|
722 |
-
channel_order = self.config.controlnet_conditioning_channel_order
|
723 |
-
|
724 |
-
if channel_order == "rgb":
|
725 |
-
# in rgb order by default
|
726 |
-
...
|
727 |
-
elif channel_order == "bgr":
|
728 |
-
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
729 |
-
else:
|
730 |
-
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
731 |
-
|
732 |
-
# prepare attention_mask
|
733 |
-
if attention_mask is not None:
|
734 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
735 |
-
attention_mask = attention_mask.unsqueeze(1)
|
736 |
-
|
737 |
-
# 1. time
|
738 |
-
timesteps = timestep
|
739 |
-
if not torch.is_tensor(timesteps):
|
740 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
741 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
742 |
-
is_mps = sample.device.type == "mps"
|
743 |
-
if isinstance(timestep, float):
|
744 |
-
dtype = torch.float32 if is_mps else torch.float64
|
745 |
-
else:
|
746 |
-
dtype = torch.int32 if is_mps else torch.int64
|
747 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
748 |
-
elif len(timesteps.shape) == 0:
|
749 |
-
timesteps = timesteps[None].to(sample.device)
|
750 |
-
|
751 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
752 |
-
timesteps = timesteps.expand(sample.shape[0])
|
753 |
-
|
754 |
-
t_emb = self.time_proj(timesteps)
|
755 |
-
|
756 |
-
# timesteps does not contain any weights and will always return f32 tensors
|
757 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
758 |
-
# there might be better ways to encapsulate this.
|
759 |
-
t_emb = t_emb.to(dtype=sample.dtype)
|
760 |
-
|
761 |
-
emb = self.time_embedding(t_emb, timestep_cond)
|
762 |
-
aug_emb = None
|
763 |
-
|
764 |
-
if self.class_embedding is not None:
|
765 |
-
if class_labels is None:
|
766 |
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
767 |
-
|
768 |
-
if self.config.class_embed_type == "timestep":
|
769 |
-
class_labels = self.time_proj(class_labels)
|
770 |
-
|
771 |
-
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
772 |
-
emb = emb + class_emb
|
773 |
-
|
774 |
-
if self.config.addition_embed_type is not None:
|
775 |
-
if self.config.addition_embed_type == "text":
|
776 |
-
aug_emb = self.add_embedding(encoder_hidden_states)
|
777 |
-
|
778 |
-
elif self.config.addition_embed_type == "text_time":
|
779 |
-
if "text_embeds" not in added_cond_kwargs:
|
780 |
-
raise ValueError(
|
781 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
782 |
-
)
|
783 |
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
784 |
-
if "time_ids" not in added_cond_kwargs:
|
785 |
-
raise ValueError(
|
786 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
787 |
-
)
|
788 |
-
time_ids = added_cond_kwargs.get("time_ids")
|
789 |
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
790 |
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
791 |
-
|
792 |
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
793 |
-
add_embeds = add_embeds.to(emb.dtype)
|
794 |
-
aug_emb = self.add_embedding(add_embeds)
|
795 |
-
|
796 |
-
emb = emb + aug_emb if aug_emb is not None else emb
|
797 |
-
|
798 |
-
# 2. pre-process
|
799 |
-
sample = self.conv_in(sample)
|
800 |
-
|
801 |
-
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
802 |
-
sample = sample + controlnet_cond
|
803 |
-
|
804 |
-
# 3. down
|
805 |
-
down_block_res_samples = (sample,)
|
806 |
-
for downsample_block in self.down_blocks:
|
807 |
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
808 |
-
sample, res_samples = downsample_block(
|
809 |
-
hidden_states=sample,
|
810 |
-
temb=emb,
|
811 |
-
encoder_hidden_states=encoder_hidden_states,
|
812 |
-
attention_mask=attention_mask,
|
813 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
814 |
-
)
|
815 |
-
else:
|
816 |
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
817 |
-
|
818 |
-
down_block_res_samples += res_samples
|
819 |
-
|
820 |
-
# 4. mid
|
821 |
-
if self.mid_block is not None:
|
822 |
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
823 |
-
sample = self.mid_block(
|
824 |
-
sample,
|
825 |
-
emb,
|
826 |
-
encoder_hidden_states=encoder_hidden_states,
|
827 |
-
attention_mask=attention_mask,
|
828 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
829 |
-
)
|
830 |
-
else:
|
831 |
-
sample = self.mid_block(sample, emb)
|
832 |
-
|
833 |
-
# 5. Control net blocks
|
834 |
-
|
835 |
-
controlnet_down_block_res_samples = ()
|
836 |
-
|
837 |
-
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
838 |
-
down_block_res_sample = controlnet_block(down_block_res_sample)
|
839 |
-
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
840 |
-
|
841 |
-
down_block_res_samples = controlnet_down_block_res_samples
|
842 |
-
|
843 |
-
mid_block_res_sample = self.controlnet_mid_block(sample)
|
844 |
-
|
845 |
-
# 6. scaling
|
846 |
-
if guess_mode and not self.config.global_pool_conditions:
|
847 |
-
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
848 |
-
scales = scales * conditioning_scale
|
849 |
-
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
850 |
-
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
851 |
-
else:
|
852 |
-
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
853 |
-
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
854 |
-
|
855 |
-
if self.config.global_pool_conditions:
|
856 |
-
down_block_res_samples = [
|
857 |
-
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
858 |
-
]
|
859 |
-
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
860 |
-
|
861 |
-
if not return_dict:
|
862 |
-
return (down_block_res_samples, mid_block_res_sample)
|
863 |
-
|
864 |
-
return ControlNetOutput(
|
865 |
-
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
866 |
-
)
|
867 |
-
|
868 |
-
|
869 |
-
def zero_module(module):
|
870 |
-
for p in module.parameters():
|
871 |
-
nn.init.zeros_(p)
|
872 |
-
return module
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|