OriLib commited on
Commit
9b8f56c
·
verified ·
1 Parent(s): b66129e

Delete replace_bg/model/replace_bg_model_controlnet.py

Browse files
replace_bg/model/replace_bg_model_controlnet.py DELETED
@@ -1,872 +0,0 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- from dataclasses import dataclass
15
- from typing import Any, Dict, List, Optional, Tuple, Union
16
-
17
- import torch
18
- from torch import nn
19
- from torch.nn import functional as F
20
-
21
- from diffusers.configuration_utils import ConfigMixin, register_to_config
22
- from diffusers.loaders.single_file_model import FromOriginalModelMixin
23
- from diffusers.utils import BaseOutput, logging
24
- from diffusers.models.attention_processor import (
25
- ADDED_KV_ATTENTION_PROCESSORS,
26
- CROSS_ATTENTION_PROCESSORS,
27
- AttentionProcessor,
28
- AttnAddedKVProcessor,
29
- AttnProcessor,
30
- )
31
- from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
32
- from diffusers.models.modeling_utils import ModelMixin
33
- from diffusers.models.unets.unet_2d_blocks import (
34
- CrossAttnDownBlock2D,
35
- DownBlock2D,
36
- UNetMidBlock2D,
37
- UNetMidBlock2DCrossAttn,
38
- get_down_block,
39
- )
40
- from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
41
-
42
-
43
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
-
45
-
46
- @dataclass
47
- class ControlNetOutput(BaseOutput):
48
- """
49
- The output of [`ControlNetModel`].
50
-
51
- Args:
52
- down_block_res_samples (`tuple[torch.Tensor]`):
53
- A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
54
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
55
- used to condition the original UNet's downsampling activations.
56
- mid_down_block_re_sample (`torch.Tensor`):
57
- The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
58
- `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
59
- Output can be used to condition the original UNet's middle block activation.
60
- """
61
-
62
- down_block_res_samples: Tuple[torch.Tensor]
63
- mid_block_res_sample: torch.Tensor
64
-
65
-
66
- class ControlNetConditioningEmbedding(nn.Module):
67
- """
68
- Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
69
- [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
70
- training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
71
- convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
72
- (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
73
- model) to encode image-space conditions ... into feature maps ..."
74
- """
75
-
76
- def __init__(
77
- self,
78
- conditioning_embedding_channels: int,
79
- conditioning_channels: int = 5, # Bria: update to 5
80
- block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
81
- ):
82
- super().__init__()
83
-
84
- self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
85
-
86
- self.blocks = nn.ModuleList([])
87
-
88
- for i in range(len(block_out_channels) - 1):
89
- channel_in = block_out_channels[i]
90
- channel_out = block_out_channels[i + 1]
91
- self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
92
- self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1)) # Bria: update stride to 1
93
-
94
- self.conv_out = zero_module(
95
- nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
96
- )
97
-
98
- def forward(self, conditioning):
99
- embedding = self.conv_in(conditioning)
100
- embedding = F.silu(embedding)
101
-
102
- for block in self.blocks:
103
- embedding = block(embedding)
104
- embedding = F.silu(embedding)
105
-
106
- embedding = self.conv_out(embedding)
107
-
108
- return embedding
109
-
110
-
111
- class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
112
- """
113
- A ControlNet model.
114
-
115
- Args:
116
- in_channels (`int`, defaults to 4):
117
- The number of channels in the input sample.
118
- flip_sin_to_cos (`bool`, defaults to `True`):
119
- Whether to flip the sin to cos in the time embedding.
120
- freq_shift (`int`, defaults to 0):
121
- The frequency shift to apply to the time embedding.
122
- down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
123
- The tuple of downsample blocks to use.
124
- only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
125
- block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
126
- The tuple of output channels for each block.
127
- layers_per_block (`int`, defaults to 2):
128
- The number of layers per block.
129
- downsample_padding (`int`, defaults to 1):
130
- The padding to use for the downsampling convolution.
131
- mid_block_scale_factor (`float`, defaults to 1):
132
- The scale factor to use for the mid block.
133
- act_fn (`str`, defaults to "silu"):
134
- The activation function to use.
135
- norm_num_groups (`int`, *optional*, defaults to 32):
136
- The number of groups to use for the normalization. If None, normalization and activation layers is skipped
137
- in post-processing.
138
- norm_eps (`float`, defaults to 1e-5):
139
- The epsilon to use for the normalization.
140
- cross_attention_dim (`int`, defaults to 1280):
141
- The dimension of the cross attention features.
142
- transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
143
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
144
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
145
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
146
- encoder_hid_dim (`int`, *optional*, defaults to None):
147
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
148
- dimension to `cross_attention_dim`.
149
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
150
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
151
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
152
- attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
153
- The dimension of the attention heads.
154
- use_linear_projection (`bool`, defaults to `False`):
155
- class_embed_type (`str`, *optional*, defaults to `None`):
156
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
157
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
158
- addition_embed_type (`str`, *optional*, defaults to `None`):
159
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
160
- "text". "text" will use the `TextTimeEmbedding` layer.
161
- num_class_embeds (`int`, *optional*, defaults to 0):
162
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
163
- class conditioning with `class_embed_type` equal to `None`.
164
- upcast_attention (`bool`, defaults to `False`):
165
- resnet_time_scale_shift (`str`, defaults to `"default"`):
166
- Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
167
- projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
168
- The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
169
- `class_embed_type="projection"`.
170
- controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
171
- The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
172
- conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
173
- The tuple of output channel for each block in the `conditioning_embedding` layer.
174
- global_pool_conditions (`bool`, defaults to `False`):
175
- TODO(Patrick) - unused parameter.
176
- addition_embed_type_num_heads (`int`, defaults to 64):
177
- The number of heads to use for the `TextTimeEmbedding` layer.
178
- """
179
-
180
- _supports_gradient_checkpointing = True
181
-
182
- @register_to_config
183
- def __init__(
184
- self,
185
- in_channels: int = 4,
186
- conditioning_channels: int = 3,
187
- flip_sin_to_cos: bool = True,
188
- freq_shift: int = 0,
189
- down_block_types: Tuple[str, ...] = (
190
- "CrossAttnDownBlock2D",
191
- "CrossAttnDownBlock2D",
192
- "CrossAttnDownBlock2D",
193
- "DownBlock2D",
194
- ),
195
- mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
196
- only_cross_attention: Union[bool, Tuple[bool]] = False,
197
- block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
198
- layers_per_block: int = 2,
199
- downsample_padding: int = 1,
200
- mid_block_scale_factor: float = 1,
201
- act_fn: str = "silu",
202
- norm_num_groups: Optional[int] = 32,
203
- norm_eps: float = 1e-5,
204
- cross_attention_dim: int = 1280,
205
- transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
206
- encoder_hid_dim: Optional[int] = None,
207
- encoder_hid_dim_type: Optional[str] = None,
208
- attention_head_dim: Union[int, Tuple[int, ...]] = 8,
209
- num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
210
- use_linear_projection: bool = False,
211
- class_embed_type: Optional[str] = None,
212
- addition_embed_type: Optional[str] = None,
213
- addition_time_embed_dim: Optional[int] = None,
214
- num_class_embeds: Optional[int] = None,
215
- upcast_attention: bool = False,
216
- resnet_time_scale_shift: str = "default",
217
- projection_class_embeddings_input_dim: Optional[int] = None,
218
- controlnet_conditioning_channel_order: str = "rgb",
219
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
220
- global_pool_conditions: bool = False,
221
- addition_embed_type_num_heads: int = 64,
222
- ):
223
- super().__init__()
224
-
225
- # If `num_attention_heads` is not defined (which is the case for most models)
226
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
227
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
228
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
229
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
230
- # which is why we correct for the naming here.
231
- num_attention_heads = num_attention_heads or attention_head_dim
232
-
233
- # Check inputs
234
- if len(block_out_channels) != len(down_block_types):
235
- raise ValueError(
236
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
237
- )
238
-
239
- if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
240
- raise ValueError(
241
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
242
- )
243
-
244
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
245
- raise ValueError(
246
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
247
- )
248
-
249
- if isinstance(transformer_layers_per_block, int):
250
- transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
251
-
252
- # input
253
- conv_in_kernel = 3
254
- conv_in_padding = (conv_in_kernel - 1) // 2
255
- self.conv_in = nn.Conv2d(
256
- in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
257
- )
258
-
259
- # time
260
- time_embed_dim = block_out_channels[0] * 4
261
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
262
- timestep_input_dim = block_out_channels[0]
263
- self.time_embedding = TimestepEmbedding(
264
- timestep_input_dim,
265
- time_embed_dim,
266
- act_fn=act_fn,
267
- )
268
-
269
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
270
- encoder_hid_dim_type = "text_proj"
271
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
272
- logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
273
-
274
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
275
- raise ValueError(
276
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
277
- )
278
-
279
- if encoder_hid_dim_type == "text_proj":
280
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
281
- elif encoder_hid_dim_type == "text_image_proj":
282
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
283
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
284
- # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
285
- self.encoder_hid_proj = TextImageProjection(
286
- text_embed_dim=encoder_hid_dim,
287
- image_embed_dim=cross_attention_dim,
288
- cross_attention_dim=cross_attention_dim,
289
- )
290
-
291
- elif encoder_hid_dim_type is not None:
292
- raise ValueError(
293
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
294
- )
295
- else:
296
- self.encoder_hid_proj = None
297
-
298
- # class embedding
299
- if class_embed_type is None and num_class_embeds is not None:
300
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
301
- elif class_embed_type == "timestep":
302
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
303
- elif class_embed_type == "identity":
304
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
305
- elif class_embed_type == "projection":
306
- if projection_class_embeddings_input_dim is None:
307
- raise ValueError(
308
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
309
- )
310
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
311
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
312
- # 2. it projects from an arbitrary input dimension.
313
- #
314
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
315
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
316
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
317
- self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
318
- else:
319
- self.class_embedding = None
320
-
321
- if addition_embed_type == "text":
322
- if encoder_hid_dim is not None:
323
- text_time_embedding_from_dim = encoder_hid_dim
324
- else:
325
- text_time_embedding_from_dim = cross_attention_dim
326
-
327
- self.add_embedding = TextTimeEmbedding(
328
- text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
329
- )
330
- elif addition_embed_type == "text_image":
331
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
332
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
333
- # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
334
- self.add_embedding = TextImageTimeEmbedding(
335
- text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
336
- )
337
- elif addition_embed_type == "text_time":
338
- self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
339
- self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
340
-
341
- elif addition_embed_type is not None:
342
- raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
343
-
344
- # control net conditioning embedding
345
- self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
346
- conditioning_embedding_channels=block_out_channels[0],
347
- block_out_channels=conditioning_embedding_out_channels,
348
- conditioning_channels=conditioning_channels,
349
- )
350
-
351
- self.down_blocks = nn.ModuleList([])
352
- self.controlnet_down_blocks = nn.ModuleList([])
353
-
354
- if isinstance(only_cross_attention, bool):
355
- only_cross_attention = [only_cross_attention] * len(down_block_types)
356
-
357
- if isinstance(attention_head_dim, int):
358
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
359
-
360
- if isinstance(num_attention_heads, int):
361
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
362
-
363
- # down
364
- output_channel = block_out_channels[0]
365
-
366
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
367
- controlnet_block = zero_module(controlnet_block)
368
- self.controlnet_down_blocks.append(controlnet_block)
369
-
370
- for i, down_block_type in enumerate(down_block_types):
371
- input_channel = output_channel
372
- output_channel = block_out_channels[i]
373
- is_final_block = i == len(block_out_channels) - 1
374
-
375
- down_block = get_down_block(
376
- down_block_type,
377
- num_layers=layers_per_block,
378
- transformer_layers_per_block=transformer_layers_per_block[i],
379
- in_channels=input_channel,
380
- out_channels=output_channel,
381
- temb_channels=time_embed_dim,
382
- add_downsample=not is_final_block,
383
- resnet_eps=norm_eps,
384
- resnet_act_fn=act_fn,
385
- resnet_groups=norm_num_groups,
386
- cross_attention_dim=cross_attention_dim,
387
- num_attention_heads=num_attention_heads[i],
388
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
389
- downsample_padding=downsample_padding,
390
- use_linear_projection=use_linear_projection,
391
- only_cross_attention=only_cross_attention[i],
392
- upcast_attention=upcast_attention,
393
- resnet_time_scale_shift=resnet_time_scale_shift,
394
- )
395
- self.down_blocks.append(down_block)
396
-
397
- for _ in range(layers_per_block):
398
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
399
- controlnet_block = zero_module(controlnet_block)
400
- self.controlnet_down_blocks.append(controlnet_block)
401
-
402
- if not is_final_block:
403
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
404
- controlnet_block = zero_module(controlnet_block)
405
- self.controlnet_down_blocks.append(controlnet_block)
406
-
407
- # mid
408
- mid_block_channel = block_out_channels[-1]
409
-
410
- controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
411
- controlnet_block = zero_module(controlnet_block)
412
- self.controlnet_mid_block = controlnet_block
413
-
414
- if mid_block_type == "UNetMidBlock2DCrossAttn":
415
- self.mid_block = UNetMidBlock2DCrossAttn(
416
- transformer_layers_per_block=transformer_layers_per_block[-1],
417
- in_channels=mid_block_channel,
418
- temb_channels=time_embed_dim,
419
- resnet_eps=norm_eps,
420
- resnet_act_fn=act_fn,
421
- output_scale_factor=mid_block_scale_factor,
422
- resnet_time_scale_shift=resnet_time_scale_shift,
423
- cross_attention_dim=cross_attention_dim,
424
- num_attention_heads=num_attention_heads[-1],
425
- resnet_groups=norm_num_groups,
426
- use_linear_projection=use_linear_projection,
427
- upcast_attention=upcast_attention,
428
- )
429
- elif mid_block_type == "UNetMidBlock2D":
430
- self.mid_block = UNetMidBlock2D(
431
- in_channels=block_out_channels[-1],
432
- temb_channels=time_embed_dim,
433
- num_layers=0,
434
- resnet_eps=norm_eps,
435
- resnet_act_fn=act_fn,
436
- output_scale_factor=mid_block_scale_factor,
437
- resnet_groups=norm_num_groups,
438
- resnet_time_scale_shift=resnet_time_scale_shift,
439
- add_attention=False,
440
- )
441
- else:
442
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
443
-
444
- @classmethod
445
- def from_unet(
446
- cls,
447
- unet: UNet2DConditionModel,
448
- controlnet_conditioning_channel_order: str = "rgb",
449
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
450
- load_weights_from_unet: bool = True,
451
- conditioning_channels: int = 3,
452
- ):
453
- r"""
454
- Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
455
-
456
- Parameters:
457
- unet (`UNet2DConditionModel`):
458
- The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
459
- where applicable.
460
- """
461
- transformer_layers_per_block = (
462
- unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
463
- )
464
- encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
465
- encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
466
- addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
467
- addition_time_embed_dim = (
468
- unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
469
- )
470
-
471
- controlnet = cls(
472
- encoder_hid_dim=encoder_hid_dim,
473
- encoder_hid_dim_type=encoder_hid_dim_type,
474
- addition_embed_type=addition_embed_type,
475
- addition_time_embed_dim=addition_time_embed_dim,
476
- transformer_layers_per_block=transformer_layers_per_block,
477
- in_channels=unet.config.in_channels,
478
- flip_sin_to_cos=unet.config.flip_sin_to_cos,
479
- freq_shift=unet.config.freq_shift,
480
- down_block_types=unet.config.down_block_types,
481
- only_cross_attention=unet.config.only_cross_attention,
482
- block_out_channels=unet.config.block_out_channels,
483
- layers_per_block=unet.config.layers_per_block,
484
- downsample_padding=unet.config.downsample_padding,
485
- mid_block_scale_factor=unet.config.mid_block_scale_factor,
486
- act_fn=unet.config.act_fn,
487
- norm_num_groups=unet.config.norm_num_groups,
488
- norm_eps=unet.config.norm_eps,
489
- cross_attention_dim=unet.config.cross_attention_dim,
490
- attention_head_dim=unet.config.attention_head_dim,
491
- num_attention_heads=unet.config.num_attention_heads,
492
- use_linear_projection=unet.config.use_linear_projection,
493
- class_embed_type=unet.config.class_embed_type,
494
- num_class_embeds=unet.config.num_class_embeds,
495
- upcast_attention=unet.config.upcast_attention,
496
- resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
497
- projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
498
- mid_block_type=unet.config.mid_block_type,
499
- controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
500
- conditioning_embedding_out_channels=conditioning_embedding_out_channels,
501
- conditioning_channels=conditioning_channels,
502
- )
503
-
504
- if load_weights_from_unet:
505
- controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
506
- controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
507
- controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
508
-
509
- if controlnet.class_embedding:
510
- controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
511
-
512
- if hasattr(controlnet, "add_embedding"):
513
- controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
514
-
515
- controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
516
- controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
517
-
518
- return controlnet
519
-
520
- @property
521
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
522
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
523
- r"""
524
- Returns:
525
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
526
- indexed by its weight name.
527
- """
528
- # set recursively
529
- processors = {}
530
-
531
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
532
- if hasattr(module, "get_processor"):
533
- processors[f"{name}.processor"] = module.get_processor()
534
-
535
- for sub_name, child in module.named_children():
536
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
537
-
538
- return processors
539
-
540
- for name, module in self.named_children():
541
- fn_recursive_add_processors(name, module, processors)
542
-
543
- return processors
544
-
545
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
546
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
547
- r"""
548
- Sets the attention processor to use to compute attention.
549
-
550
- Parameters:
551
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
552
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
553
- for **all** `Attention` layers.
554
-
555
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
556
- processor. This is strongly recommended when setting trainable attention processors.
557
-
558
- """
559
- count = len(self.attn_processors.keys())
560
-
561
- if isinstance(processor, dict) and len(processor) != count:
562
- raise ValueError(
563
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
564
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
565
- )
566
-
567
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
568
- if hasattr(module, "set_processor"):
569
- if not isinstance(processor, dict):
570
- module.set_processor(processor)
571
- else:
572
- module.set_processor(processor.pop(f"{name}.processor"))
573
-
574
- for sub_name, child in module.named_children():
575
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
576
-
577
- for name, module in self.named_children():
578
- fn_recursive_attn_processor(name, module, processor)
579
-
580
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
581
- def set_default_attn_processor(self):
582
- """
583
- Disables custom attention processors and sets the default attention implementation.
584
- """
585
- if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
586
- processor = AttnAddedKVProcessor()
587
- elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
588
- processor = AttnProcessor()
589
- else:
590
- raise ValueError(
591
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
592
- )
593
-
594
- self.set_attn_processor(processor)
595
-
596
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
597
- def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
598
- r"""
599
- Enable sliced attention computation.
600
-
601
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
602
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
603
-
604
- Args:
605
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
606
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
607
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
608
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
609
- must be a multiple of `slice_size`.
610
- """
611
- sliceable_head_dims = []
612
-
613
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
614
- if hasattr(module, "set_attention_slice"):
615
- sliceable_head_dims.append(module.sliceable_head_dim)
616
-
617
- for child in module.children():
618
- fn_recursive_retrieve_sliceable_dims(child)
619
-
620
- # retrieve number of attention layers
621
- for module in self.children():
622
- fn_recursive_retrieve_sliceable_dims(module)
623
-
624
- num_sliceable_layers = len(sliceable_head_dims)
625
-
626
- if slice_size == "auto":
627
- # half the attention head size is usually a good trade-off between
628
- # speed and memory
629
- slice_size = [dim // 2 for dim in sliceable_head_dims]
630
- elif slice_size == "max":
631
- # make smallest slice possible
632
- slice_size = num_sliceable_layers * [1]
633
-
634
- slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
635
-
636
- if len(slice_size) != len(sliceable_head_dims):
637
- raise ValueError(
638
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
639
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
640
- )
641
-
642
- for i in range(len(slice_size)):
643
- size = slice_size[i]
644
- dim = sliceable_head_dims[i]
645
- if size is not None and size > dim:
646
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
647
-
648
- # Recursively walk through all the children.
649
- # Any children which exposes the set_attention_slice method
650
- # gets the message
651
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
652
- if hasattr(module, "set_attention_slice"):
653
- module.set_attention_slice(slice_size.pop())
654
-
655
- for child in module.children():
656
- fn_recursive_set_attention_slice(child, slice_size)
657
-
658
- reversed_slice_size = list(reversed(slice_size))
659
- for module in self.children():
660
- fn_recursive_set_attention_slice(module, reversed_slice_size)
661
-
662
- def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
663
- if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
664
- module.gradient_checkpointing = value
665
-
666
- def forward(
667
- self,
668
- sample: torch.Tensor,
669
- timestep: Union[torch.Tensor, float, int],
670
- encoder_hidden_states: torch.Tensor,
671
- controlnet_cond: torch.Tensor,
672
- conditioning_scale: float = 1.0,
673
- class_labels: Optional[torch.Tensor] = None,
674
- timestep_cond: Optional[torch.Tensor] = None,
675
- attention_mask: Optional[torch.Tensor] = None,
676
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
677
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
678
- guess_mode: bool = False,
679
- return_dict: bool = True,
680
- ) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
681
- """
682
- The [`ControlNetModel`] forward method.
683
-
684
- Args:
685
- sample (`torch.Tensor`):
686
- The noisy input tensor.
687
- timestep (`Union[torch.Tensor, float, int]`):
688
- The number of timesteps to denoise an input.
689
- encoder_hidden_states (`torch.Tensor`):
690
- The encoder hidden states.
691
- controlnet_cond (`torch.Tensor`):
692
- The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
693
- conditioning_scale (`float`, defaults to `1.0`):
694
- The scale factor for ControlNet outputs.
695
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
696
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
697
- timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
698
- Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
699
- timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
700
- embeddings.
701
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
702
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
703
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
704
- negative values to the attention scores corresponding to "discard" tokens.
705
- added_cond_kwargs (`dict`):
706
- Additional conditions for the Stable Diffusion XL UNet.
707
- cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
708
- A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
709
- guess_mode (`bool`, defaults to `False`):
710
- In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
711
- you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
712
- return_dict (`bool`, defaults to `True`):
713
- Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain
714
- tuple.
715
-
716
- Returns:
717
- [`~models.controlnets.controlnet.ControlNetOutput`] **or** `tuple`:
718
- If `return_dict` is `True`, a [`~models.controlnets.controlnet.ControlNetOutput`] is returned,
719
- otherwise a tuple is returned where the first element is the sample tensor.
720
- """
721
- # check channel order
722
- channel_order = self.config.controlnet_conditioning_channel_order
723
-
724
- if channel_order == "rgb":
725
- # in rgb order by default
726
- ...
727
- elif channel_order == "bgr":
728
- controlnet_cond = torch.flip(controlnet_cond, dims=[1])
729
- else:
730
- raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
731
-
732
- # prepare attention_mask
733
- if attention_mask is not None:
734
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
735
- attention_mask = attention_mask.unsqueeze(1)
736
-
737
- # 1. time
738
- timesteps = timestep
739
- if not torch.is_tensor(timesteps):
740
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
741
- # This would be a good case for the `match` statement (Python 3.10+)
742
- is_mps = sample.device.type == "mps"
743
- if isinstance(timestep, float):
744
- dtype = torch.float32 if is_mps else torch.float64
745
- else:
746
- dtype = torch.int32 if is_mps else torch.int64
747
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
748
- elif len(timesteps.shape) == 0:
749
- timesteps = timesteps[None].to(sample.device)
750
-
751
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
752
- timesteps = timesteps.expand(sample.shape[0])
753
-
754
- t_emb = self.time_proj(timesteps)
755
-
756
- # timesteps does not contain any weights and will always return f32 tensors
757
- # but time_embedding might actually be running in fp16. so we need to cast here.
758
- # there might be better ways to encapsulate this.
759
- t_emb = t_emb.to(dtype=sample.dtype)
760
-
761
- emb = self.time_embedding(t_emb, timestep_cond)
762
- aug_emb = None
763
-
764
- if self.class_embedding is not None:
765
- if class_labels is None:
766
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
767
-
768
- if self.config.class_embed_type == "timestep":
769
- class_labels = self.time_proj(class_labels)
770
-
771
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
772
- emb = emb + class_emb
773
-
774
- if self.config.addition_embed_type is not None:
775
- if self.config.addition_embed_type == "text":
776
- aug_emb = self.add_embedding(encoder_hidden_states)
777
-
778
- elif self.config.addition_embed_type == "text_time":
779
- if "text_embeds" not in added_cond_kwargs:
780
- raise ValueError(
781
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
782
- )
783
- text_embeds = added_cond_kwargs.get("text_embeds")
784
- if "time_ids" not in added_cond_kwargs:
785
- raise ValueError(
786
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
787
- )
788
- time_ids = added_cond_kwargs.get("time_ids")
789
- time_embeds = self.add_time_proj(time_ids.flatten())
790
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
791
-
792
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
793
- add_embeds = add_embeds.to(emb.dtype)
794
- aug_emb = self.add_embedding(add_embeds)
795
-
796
- emb = emb + aug_emb if aug_emb is not None else emb
797
-
798
- # 2. pre-process
799
- sample = self.conv_in(sample)
800
-
801
- controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
802
- sample = sample + controlnet_cond
803
-
804
- # 3. down
805
- down_block_res_samples = (sample,)
806
- for downsample_block in self.down_blocks:
807
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
808
- sample, res_samples = downsample_block(
809
- hidden_states=sample,
810
- temb=emb,
811
- encoder_hidden_states=encoder_hidden_states,
812
- attention_mask=attention_mask,
813
- cross_attention_kwargs=cross_attention_kwargs,
814
- )
815
- else:
816
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
817
-
818
- down_block_res_samples += res_samples
819
-
820
- # 4. mid
821
- if self.mid_block is not None:
822
- if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
823
- sample = self.mid_block(
824
- sample,
825
- emb,
826
- encoder_hidden_states=encoder_hidden_states,
827
- attention_mask=attention_mask,
828
- cross_attention_kwargs=cross_attention_kwargs,
829
- )
830
- else:
831
- sample = self.mid_block(sample, emb)
832
-
833
- # 5. Control net blocks
834
-
835
- controlnet_down_block_res_samples = ()
836
-
837
- for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
838
- down_block_res_sample = controlnet_block(down_block_res_sample)
839
- controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
840
-
841
- down_block_res_samples = controlnet_down_block_res_samples
842
-
843
- mid_block_res_sample = self.controlnet_mid_block(sample)
844
-
845
- # 6. scaling
846
- if guess_mode and not self.config.global_pool_conditions:
847
- scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
848
- scales = scales * conditioning_scale
849
- down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
850
- mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
851
- else:
852
- down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
853
- mid_block_res_sample = mid_block_res_sample * conditioning_scale
854
-
855
- if self.config.global_pool_conditions:
856
- down_block_res_samples = [
857
- torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
858
- ]
859
- mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
860
-
861
- if not return_dict:
862
- return (down_block_res_samples, mid_block_res_sample)
863
-
864
- return ControlNetOutput(
865
- down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
866
- )
867
-
868
-
869
- def zero_module(module):
870
- for p in module.parameters():
871
- nn.init.zeros_(p)
872
- return module