Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload 5 files
Browse files- bria_utils.py +72 -0
- controlnet_bria.py +649 -0
- pipeline_bria.py +558 -0
- pipeline_bria_controlnet.py +532 -0
- transformer_bria.py +336 -0
    	
        bria_utils.py
    ADDED
    
    | @@ -0,0 +1,72 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Union, Optional, List
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from diffusers.utils import logging
         | 
| 4 | 
            +
            from transformers import (
         | 
| 5 | 
            +
                T5EncoderModel,
         | 
| 6 | 
            +
                T5TokenizerFast,
         | 
| 7 | 
            +
            )
         | 
| 8 | 
            +
            import numpy as np
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            def get_t5_prompt_embeds(
         | 
| 13 | 
            +
                tokenizer: T5TokenizerFast ,
         | 
| 14 | 
            +
                text_encoder: T5EncoderModel,
         | 
| 15 | 
            +
                prompt: Union[str, List[str]] = None,
         | 
| 16 | 
            +
                num_images_per_prompt: int = 1,
         | 
| 17 | 
            +
                max_sequence_length: int = 128,
         | 
| 18 | 
            +
                device: Optional[torch.device] = None,
         | 
| 19 | 
            +
            ):
         | 
| 20 | 
            +
                device = device or text_encoder.device
         | 
| 21 | 
            +
                
         | 
| 22 | 
            +
                prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 23 | 
            +
                batch_size = len(prompt)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                text_inputs = tokenizer(
         | 
| 26 | 
            +
                    prompt,
         | 
| 27 | 
            +
                    # padding="max_length",
         | 
| 28 | 
            +
                    max_length=max_sequence_length,
         | 
| 29 | 
            +
                    truncation=True,
         | 
| 30 | 
            +
                    add_special_tokens=True,
         | 
| 31 | 
            +
                    return_tensors="pt",
         | 
| 32 | 
            +
                )
         | 
| 33 | 
            +
                text_input_ids = text_inputs.input_ids
         | 
| 34 | 
            +
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         | 
| 37 | 
            +
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
         | 
| 38 | 
            +
                    logger.warning(
         | 
| 39 | 
            +
                        "The following part of your input was truncated because `max_sequence_length` is set to "
         | 
| 40 | 
            +
                        f" {max_sequence_length} tokens: {removed_text}"
         | 
| 41 | 
            +
                    )
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                prompt_embeds = text_encoder(text_input_ids.to(device))[0]
         | 
| 44 | 
            +
                
         | 
| 45 | 
            +
                # Concat zeros to max_sequence
         | 
| 46 | 
            +
                b, seq_len, dim = prompt_embeds.shape
         | 
| 47 | 
            +
                if seq_len<max_sequence_length:
         | 
| 48 | 
            +
                    padding = torch.zeros((b,max_sequence_length-seq_len,dim),dtype=prompt_embeds.dtype,device=prompt_embeds.device)
         | 
| 49 | 
            +
                    prompt_embeds = torch.concat([prompt_embeds,padding],dim=1)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                prompt_embeds = prompt_embeds.to(device=device)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                _, seq_len, _ = prompt_embeds.shape
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
         | 
| 56 | 
            +
                prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 57 | 
            +
                prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                return prompt_embeds
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            # in order the get the same sigmas as in training and sample from them
         | 
| 62 | 
            +
            def get_original_sigmas(num_train_timesteps=1000,num_inference_steps=1000):
         | 
| 63 | 
            +
                timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
         | 
| 64 | 
            +
                sigmas = timesteps / num_train_timesteps
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                inds = [int(ind) for ind in  np.linspace(0, num_train_timesteps-1, num_inference_steps)]
         | 
| 67 | 
            +
                new_sigmas = sigmas[inds]
         | 
| 68 | 
            +
                return new_sigmas
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            def is_ng_none(negative_prompt):
         | 
| 71 | 
            +
                return negative_prompt is None  or negative_prompt=='' or (isinstance(negative_prompt,list) and negative_prompt[0] is None) or (type(negative_prompt)==list and negative_prompt[0]=='')
         | 
| 72 | 
            +
             | 
    	
        controlnet_bria.py
    ADDED
    
    | @@ -0,0 +1,649 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # type: ignore
         | 
| 2 | 
            +
            # Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from dataclasses import dataclass
         | 
| 17 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            import torch.nn as nn
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformer_bria import TimestepProjEmbeddings
         | 
| 23 | 
            +
            from diffusers.models.controlnet import zero_module, BaseOutput
         | 
| 24 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 25 | 
            +
            from diffusers.loaders import PeftAdapterMixin
         | 
| 26 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 27 | 
            +
            from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
         | 
| 28 | 
            +
            from diffusers.models.modeling_outputs import Transformer2DModelOutput
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # from transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock, EmbedND
         | 
| 31 | 
            +
            from diffusers.models.transformers.transformer_flux import EmbedND, FluxSingleTransformerBlock, FluxTransformerBlock
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            from diffusers.models.attention_processor import AttentionProcessor
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            @dataclass
         | 
| 39 | 
            +
            class BriaControlNetOutput(BaseOutput):
         | 
| 40 | 
            +
                controlnet_block_samples: Tuple[torch.Tensor]
         | 
| 41 | 
            +
                controlnet_single_block_samples: Tuple[torch.Tensor]
         | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
            class BriaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
         | 
| 45 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                @register_to_config
         | 
| 48 | 
            +
                def __init__(
         | 
| 49 | 
            +
                    self,
         | 
| 50 | 
            +
                    patch_size: int = 1,
         | 
| 51 | 
            +
                    in_channels: int = 64,
         | 
| 52 | 
            +
                    num_layers: int = 19,
         | 
| 53 | 
            +
                    num_single_layers: int = 38,
         | 
| 54 | 
            +
                    attention_head_dim: int = 128,
         | 
| 55 | 
            +
                    num_attention_heads: int = 24,
         | 
| 56 | 
            +
                    joint_attention_dim: int = 4096,
         | 
| 57 | 
            +
                    pooled_projection_dim: int = 768,
         | 
| 58 | 
            +
                    guidance_embeds: bool = False,
         | 
| 59 | 
            +
                    axes_dims_rope: List[int] = [16, 56, 56],
         | 
| 60 | 
            +
                    num_mode: int = None,
         | 
| 61 | 
            +
                    rope_theta: int = 10000,
         | 
| 62 | 
            +
                    time_theta: int = 10000,
         | 
| 63 | 
            +
                ):
         | 
| 64 | 
            +
                    super().__init__()
         | 
| 65 | 
            +
                    self.out_channels = in_channels
         | 
| 66 | 
            +
                    self.inner_dim = num_attention_heads * attention_head_dim
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    # self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
         | 
| 69 | 
            +
                    self.pos_embed = EmbedND(dim=self.inner_dim, theta=rope_theta, axes_dim=axes_dims_rope)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    # text_time_guidance_cls = (
         | 
| 72 | 
            +
                    # CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
         | 
| 73 | 
            +
                    # )
         | 
| 74 | 
            +
                    # self.time_text_embed = text_time_guidance_cls(
         | 
| 75 | 
            +
                    # embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
         | 
| 76 | 
            +
                    # )
         | 
| 77 | 
            +
                    self.time_embed = TimestepProjEmbeddings(
         | 
| 78 | 
            +
                        embedding_dim=self.inner_dim, max_period = 10000 #,
         | 
| 79 | 
            +
                    )
         | 
| 80 | 
            +
                    self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
         | 
| 81 | 
            +
                    self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 84 | 
            +
                        [
         | 
| 85 | 
            +
                            FluxTransformerBlock(
         | 
| 86 | 
            +
                                dim=self.inner_dim,
         | 
| 87 | 
            +
                                num_attention_heads=num_attention_heads,
         | 
| 88 | 
            +
                                attention_head_dim=attention_head_dim,
         | 
| 89 | 
            +
                            )
         | 
| 90 | 
            +
                            for i in range(num_layers)
         | 
| 91 | 
            +
                        ]
         | 
| 92 | 
            +
                    )
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    self.single_transformer_blocks = nn.ModuleList(
         | 
| 95 | 
            +
                        [
         | 
| 96 | 
            +
                            FluxSingleTransformerBlock(
         | 
| 97 | 
            +
                                dim=self.inner_dim,
         | 
| 98 | 
            +
                                num_attention_heads=num_attention_heads,
         | 
| 99 | 
            +
                                attention_head_dim=attention_head_dim,
         | 
| 100 | 
            +
                            )
         | 
| 101 | 
            +
                            for i in range(num_single_layers)
         | 
| 102 | 
            +
                        ]
         | 
| 103 | 
            +
                    )
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    # controlnet_blocks
         | 
| 106 | 
            +
                    self.controlnet_blocks = nn.ModuleList([])
         | 
| 107 | 
            +
                    for _ in range(len(self.transformer_blocks)):
         | 
| 108 | 
            +
                        self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    self.controlnet_single_blocks = nn.ModuleList([])
         | 
| 111 | 
            +
                    for _ in range(len(self.single_transformer_blocks)):
         | 
| 112 | 
            +
                        self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    self.union = num_mode is not None and num_mode > 0
         | 
| 115 | 
            +
                    if self.union:
         | 
| 116 | 
            +
                        self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    self.gradient_checkpointing = False
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                @property
         | 
| 123 | 
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
         | 
| 124 | 
            +
                def attn_processors(self):
         | 
| 125 | 
            +
                    r"""
         | 
| 126 | 
            +
                    Returns:
         | 
| 127 | 
            +
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         | 
| 128 | 
            +
                        indexed by its weight name.
         | 
| 129 | 
            +
                    """
         | 
| 130 | 
            +
                    # set recursively
         | 
| 131 | 
            +
                    processors = {}
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         | 
| 134 | 
            +
                        if hasattr(module, "get_processor"):
         | 
| 135 | 
            +
                            processors[f"{name}.processor"] = module.get_processor()
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 138 | 
            +
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                        return processors
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    for name, module in self.named_children():
         | 
| 143 | 
            +
                        fn_recursive_add_processors(name, module, processors)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    return processors
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
         | 
| 148 | 
            +
                def set_attn_processor(self, processor):
         | 
| 149 | 
            +
                    r"""
         | 
| 150 | 
            +
                    Sets the attention processor to use to compute attention.
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    Parameters:
         | 
| 153 | 
            +
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         | 
| 154 | 
            +
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         | 
| 155 | 
            +
                            for **all** `Attention` layers.
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         | 
| 158 | 
            +
                            processor. This is strongly recommended when setting trainable attention processors.
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    """
         | 
| 161 | 
            +
                    count = len(self.attn_processors.keys())
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    if isinstance(processor, dict) and len(processor) != count:
         | 
| 164 | 
            +
                        raise ValueError(
         | 
| 165 | 
            +
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         | 
| 166 | 
            +
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         | 
| 167 | 
            +
                        )
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         | 
| 170 | 
            +
                        if hasattr(module, "set_processor"):
         | 
| 171 | 
            +
                            if not isinstance(processor, dict):
         | 
| 172 | 
            +
                                module.set_processor(processor)
         | 
| 173 | 
            +
                            else:
         | 
| 174 | 
            +
                                module.set_processor(processor.pop(f"{name}.processor"))
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 177 | 
            +
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    for name, module in self.named_children():
         | 
| 180 | 
            +
                        fn_recursive_attn_processor(name, module, processor)
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 183 | 
            +
                    if hasattr(module, "gradient_checkpointing"):
         | 
| 184 | 
            +
                        module.gradient_checkpointing = value
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                @classmethod
         | 
| 187 | 
            +
                def from_transformer(
         | 
| 188 | 
            +
                    cls,
         | 
| 189 | 
            +
                    transformer,
         | 
| 190 | 
            +
                    num_layers: int = 4,
         | 
| 191 | 
            +
                    num_single_layers: int = 10,
         | 
| 192 | 
            +
                    attention_head_dim: int = 128,
         | 
| 193 | 
            +
                    num_attention_heads: int = 24,
         | 
| 194 | 
            +
                    load_weights_from_transformer=True,
         | 
| 195 | 
            +
                ):
         | 
| 196 | 
            +
                    config = transformer.config
         | 
| 197 | 
            +
                    config["num_layers"] = num_layers
         | 
| 198 | 
            +
                    config["num_single_layers"] = num_single_layers
         | 
| 199 | 
            +
                    config["attention_head_dim"] = attention_head_dim
         | 
| 200 | 
            +
                    config["num_attention_heads"] = num_attention_heads
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    controlnet = cls(**config)
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    if load_weights_from_transformer:
         | 
| 205 | 
            +
                        controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
         | 
| 206 | 
            +
                        controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
         | 
| 207 | 
            +
                        controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
         | 
| 208 | 
            +
                        controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
         | 
| 209 | 
            +
                        controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
         | 
| 210 | 
            +
                        controlnet.single_transformer_blocks.load_state_dict(
         | 
| 211 | 
            +
                            transformer.single_transformer_blocks.state_dict(), strict=False
         | 
| 212 | 
            +
                        )
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                        controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    return controlnet
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                def forward(
         | 
| 219 | 
            +
                    self,
         | 
| 220 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 221 | 
            +
                    controlnet_cond: torch.Tensor,
         | 
| 222 | 
            +
                    controlnet_mode: torch.Tensor = None,
         | 
| 223 | 
            +
                    conditioning_scale: float = 1.0,
         | 
| 224 | 
            +
                    encoder_hidden_states: torch.Tensor = None,
         | 
| 225 | 
            +
                    pooled_projections: torch.Tensor = None,
         | 
| 226 | 
            +
                    timestep: torch.LongTensor = None,
         | 
| 227 | 
            +
                    img_ids: torch.Tensor = None,
         | 
| 228 | 
            +
                    txt_ids: torch.Tensor = None,
         | 
| 229 | 
            +
                    guidance: torch.Tensor = None,
         | 
| 230 | 
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 231 | 
            +
                    return_dict: bool = True,
         | 
| 232 | 
            +
                ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
         | 
| 233 | 
            +
                    """
         | 
| 234 | 
            +
                    The [`FluxTransformer2DModel`] forward method.
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                    Args:
         | 
| 237 | 
            +
                        hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
         | 
| 238 | 
            +
                            Input `hidden_states`.
         | 
| 239 | 
            +
                        controlnet_cond (`torch.Tensor`):
         | 
| 240 | 
            +
                            The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
         | 
| 241 | 
            +
                        controlnet_mode (`torch.Tensor`):
         | 
| 242 | 
            +
                            The mode tensor of shape `(batch_size, 1)`.
         | 
| 243 | 
            +
                        conditioning_scale (`float`, defaults to `1.0`):
         | 
| 244 | 
            +
                            The scale factor for ControlNet outputs.
         | 
| 245 | 
            +
                        encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
         | 
| 246 | 
            +
                            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
         | 
| 247 | 
            +
                        pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
         | 
| 248 | 
            +
                            from the embeddings of input conditions.
         | 
| 249 | 
            +
                        timestep ( `torch.LongTensor`):
         | 
| 250 | 
            +
                            Used to indicate denoising step.
         | 
| 251 | 
            +
                        block_controlnet_hidden_states: (`list` of `torch.Tensor`):
         | 
| 252 | 
            +
                            A list of tensors that if specified are added to the residuals of transformer blocks.
         | 
| 253 | 
            +
                        joint_attention_kwargs (`dict`, *optional*):
         | 
| 254 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 255 | 
            +
                            `self.processor` in
         | 
| 256 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 257 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 258 | 
            +
                            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
         | 
| 259 | 
            +
                            tuple.
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    Returns:
         | 
| 262 | 
            +
                        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
         | 
| 263 | 
            +
                        `tuple` where the first element is the sample tensor.
         | 
| 264 | 
            +
                    """
         | 
| 265 | 
            +
                    if guidance is not None:
         | 
| 266 | 
            +
                        print("guidance is not supported in BriaControlNetModel")
         | 
| 267 | 
            +
                    if pooled_projections is not None:
         | 
| 268 | 
            +
                        print("pooled_projections is not supported in BriaControlNetModel")
         | 
| 269 | 
            +
                    if joint_attention_kwargs is not None:
         | 
| 270 | 
            +
                        joint_attention_kwargs = joint_attention_kwargs.copy()
         | 
| 271 | 
            +
                        lora_scale = joint_attention_kwargs.pop("scale", 1.0)
         | 
| 272 | 
            +
                    else:
         | 
| 273 | 
            +
                        lora_scale = 1.0
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    if USE_PEFT_BACKEND:
         | 
| 276 | 
            +
                        # weight the lora layers by setting `lora_scale` for each PEFT layer
         | 
| 277 | 
            +
                        scale_lora_layers(self, lora_scale)
         | 
| 278 | 
            +
                    else:
         | 
| 279 | 
            +
                        if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
         | 
| 280 | 
            +
                            logger.warning(
         | 
| 281 | 
            +
                                "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
         | 
| 282 | 
            +
                            )
         | 
| 283 | 
            +
                    hidden_states = self.x_embedder(hidden_states)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    # add
         | 
| 286 | 
            +
                    hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    timestep = timestep.to(hidden_states.dtype)  # Original code was * 1000
         | 
| 289 | 
            +
                    if guidance is not None:
         | 
| 290 | 
            +
                        guidance = guidance.to(hidden_states.dtype)  # Original code was * 1000
         | 
| 291 | 
            +
                    else:
         | 
| 292 | 
            +
                        guidance = None
         | 
| 293 | 
            +
                    # temb = (
         | 
| 294 | 
            +
                    # self.time_text_embed(timestep, pooled_projections)
         | 
| 295 | 
            +
                    # if guidance is None
         | 
| 296 | 
            +
                    # else self.time_text_embed(timestep, guidance, pooled_projections)
         | 
| 297 | 
            +
                    # )
         | 
| 298 | 
            +
                    temb = self.time_embed(timestep, dtype=hidden_states.dtype)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    encoder_hidden_states = self.context_embedder(encoder_hidden_states)
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                    if self.union:
         | 
| 303 | 
            +
                        # union mode
         | 
| 304 | 
            +
                        if controlnet_mode is None:
         | 
| 305 | 
            +
                            raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
         | 
| 306 | 
            +
                        # union mode emb
         | 
| 307 | 
            +
                        controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
         | 
| 308 | 
            +
                        if controlnet_mode_emb.shape[0] < encoder_hidden_states.shape[0]:
         | 
| 309 | 
            +
                            controlnet_mode_emb = controlnet_mode_emb.expand(encoder_hidden_states.shape[0], 1, 2048) 
         | 
| 310 | 
            +
                        encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
         | 
| 311 | 
            +
                        txt_ids = torch.cat((txt_ids[:, 0:1, :], txt_ids), dim=1)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    # if txt_ids.ndim == 3:
         | 
| 314 | 
            +
                    #     logger.warning(
         | 
| 315 | 
            +
                    #         "Passing `txt_ids` 3d torch.Tensor is deprecated."
         | 
| 316 | 
            +
                    #         "Please remove the batch dimension and pass it as a 2d torch Tensor"
         | 
| 317 | 
            +
                    #     )
         | 
| 318 | 
            +
                    #     txt_ids = txt_ids[0]
         | 
| 319 | 
            +
                    # if img_ids.ndim == 3:
         | 
| 320 | 
            +
                    #     logger.warning(
         | 
| 321 | 
            +
                    #         "Passing `img_ids` 3d torch.Tensor is deprecated."
         | 
| 322 | 
            +
                    #         "Please remove the batch dimension and pass it as a 2d torch Tensor"
         | 
| 323 | 
            +
                    #     )
         | 
| 324 | 
            +
                    #     img_ids = img_ids[0]
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    # ids = torch.cat((txt_ids, img_ids), dim=0)
         | 
| 327 | 
            +
                    ids = torch.cat((txt_ids, img_ids), dim=1)
         | 
| 328 | 
            +
                    image_rotary_emb = self.pos_embed(ids)
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    block_samples = ()
         | 
| 331 | 
            +
                    for index_block, block in enumerate(self.transformer_blocks):
         | 
| 332 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 335 | 
            +
                                def custom_forward(*inputs):
         | 
| 336 | 
            +
                                    if return_dict is not None:
         | 
| 337 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 338 | 
            +
                                    else:
         | 
| 339 | 
            +
                                        return module(*inputs)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                                return custom_forward
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         | 
| 344 | 
            +
                            encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 345 | 
            +
                                create_custom_forward(block),
         | 
| 346 | 
            +
                                hidden_states,
         | 
| 347 | 
            +
                                encoder_hidden_states,
         | 
| 348 | 
            +
                                temb,
         | 
| 349 | 
            +
                                image_rotary_emb,
         | 
| 350 | 
            +
                                **ckpt_kwargs,
         | 
| 351 | 
            +
                            )
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                        else:
         | 
| 354 | 
            +
                            encoder_hidden_states, hidden_states = block(
         | 
| 355 | 
            +
                                hidden_states=hidden_states,
         | 
| 356 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 357 | 
            +
                                temb=temb,
         | 
| 358 | 
            +
                                image_rotary_emb=image_rotary_emb,
         | 
| 359 | 
            +
                            )
         | 
| 360 | 
            +
                        block_samples = block_samples + (hidden_states,)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    single_block_samples = ()
         | 
| 365 | 
            +
                    for index_block, block in enumerate(self.single_transformer_blocks):
         | 
| 366 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 369 | 
            +
                                def custom_forward(*inputs):
         | 
| 370 | 
            +
                                    if return_dict is not None:
         | 
| 371 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 372 | 
            +
                                    else:
         | 
| 373 | 
            +
                                        return module(*inputs)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                                return custom_forward
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         | 
| 378 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 379 | 
            +
                                create_custom_forward(block),
         | 
| 380 | 
            +
                                hidden_states,
         | 
| 381 | 
            +
                                temb,
         | 
| 382 | 
            +
                                image_rotary_emb,
         | 
| 383 | 
            +
                                **ckpt_kwargs,
         | 
| 384 | 
            +
                            )
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                        else:
         | 
| 387 | 
            +
                            hidden_states = block(
         | 
| 388 | 
            +
                                hidden_states=hidden_states,
         | 
| 389 | 
            +
                                temb=temb,
         | 
| 390 | 
            +
                                image_rotary_emb=image_rotary_emb,
         | 
| 391 | 
            +
                            )
         | 
| 392 | 
            +
                        single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    # controlnet block
         | 
| 395 | 
            +
                    controlnet_block_samples = ()
         | 
| 396 | 
            +
                    for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
         | 
| 397 | 
            +
                        block_sample = controlnet_block(block_sample)
         | 
| 398 | 
            +
                        controlnet_block_samples = controlnet_block_samples + (block_sample,)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    controlnet_single_block_samples = ()
         | 
| 401 | 
            +
                    for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
         | 
| 402 | 
            +
                        single_block_sample = controlnet_block(single_block_sample)
         | 
| 403 | 
            +
                        controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    # scaling
         | 
| 406 | 
            +
                    controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
         | 
| 407 | 
            +
                    controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
         | 
| 410 | 
            +
                    controlnet_single_block_samples = (
         | 
| 411 | 
            +
                        None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
         | 
| 412 | 
            +
                    )
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    if USE_PEFT_BACKEND:
         | 
| 415 | 
            +
                        # remove `lora_scale` from each PEFT layer
         | 
| 416 | 
            +
                        unscale_lora_layers(self, lora_scale)
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    if not return_dict:
         | 
| 419 | 
            +
                        return (controlnet_block_samples, controlnet_single_block_samples)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    return BriaControlNetOutput(
         | 
| 422 | 
            +
                        controlnet_block_samples=controlnet_block_samples,
         | 
| 423 | 
            +
                        controlnet_single_block_samples=controlnet_single_block_samples,
         | 
| 424 | 
            +
                    )
         | 
| 425 | 
            +
             | 
| 426 | 
            +
             | 
| 427 | 
            +
            class BriaMultiControlNetModel(ModelMixin):
         | 
| 428 | 
            +
                r"""
         | 
| 429 | 
            +
                `BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
         | 
| 432 | 
            +
                compatible with `BriaControlNetModel`.
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                Args:
         | 
| 435 | 
            +
                    controlnets (`List[BriaControlNetModel]`):
         | 
| 436 | 
            +
                        Provides additional conditioning to the unet during the denoising process. You must set multiple
         | 
| 437 | 
            +
                        `BriaControlNetModel` as a list.
         | 
| 438 | 
            +
                """
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                def __init__(self, controlnets):
         | 
| 441 | 
            +
                    super().__init__()
         | 
| 442 | 
            +
                    self.nets = nn.ModuleList(controlnets)
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                def forward(
         | 
| 445 | 
            +
                    self,
         | 
| 446 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 447 | 
            +
                    controlnet_cond: List[torch.tensor],
         | 
| 448 | 
            +
                    controlnet_mode: List[torch.tensor],
         | 
| 449 | 
            +
                    conditioning_scale: List[float],
         | 
| 450 | 
            +
                    encoder_hidden_states: torch.Tensor = None,
         | 
| 451 | 
            +
                    pooled_projections: torch.Tensor = None,
         | 
| 452 | 
            +
                    timestep: torch.LongTensor = None,
         | 
| 453 | 
            +
                    img_ids: torch.Tensor = None,
         | 
| 454 | 
            +
                    txt_ids: torch.Tensor = None,
         | 
| 455 | 
            +
                    guidance: torch.Tensor = None,
         | 
| 456 | 
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 457 | 
            +
                    return_dict: bool = True,
         | 
| 458 | 
            +
                ) -> Union[BriaControlNetOutput, Tuple]:
         | 
| 459 | 
            +
                    # ControlNet-Union with multiple conditions
         | 
| 460 | 
            +
                    # only load one ControlNet for saving memories
         | 
| 461 | 
            +
                    if len(self.nets) == 1 and self.nets[0].union:
         | 
| 462 | 
            +
                        controlnet = self.nets[0]
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                        for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
         | 
| 465 | 
            +
                            block_samples, single_block_samples = controlnet(
         | 
| 466 | 
            +
                                hidden_states=hidden_states,
         | 
| 467 | 
            +
                                controlnet_cond=image,
         | 
| 468 | 
            +
                                controlnet_mode=mode[:, None],
         | 
| 469 | 
            +
                                conditioning_scale=scale,
         | 
| 470 | 
            +
                                timestep=timestep,
         | 
| 471 | 
            +
                                guidance=guidance,
         | 
| 472 | 
            +
                                pooled_projections=pooled_projections,
         | 
| 473 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 474 | 
            +
                                txt_ids=txt_ids,
         | 
| 475 | 
            +
                                img_ids=img_ids,
         | 
| 476 | 
            +
                                joint_attention_kwargs=joint_attention_kwargs,
         | 
| 477 | 
            +
                                return_dict=return_dict,
         | 
| 478 | 
            +
                            )
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                            # merge samples
         | 
| 481 | 
            +
                            if i == 0:
         | 
| 482 | 
            +
                                control_block_samples = block_samples
         | 
| 483 | 
            +
                                control_single_block_samples = single_block_samples
         | 
| 484 | 
            +
                            else:
         | 
| 485 | 
            +
                                control_block_samples = [
         | 
| 486 | 
            +
                                    control_block_sample + block_sample
         | 
| 487 | 
            +
                                    for control_block_sample, block_sample in zip(control_block_samples, block_samples)
         | 
| 488 | 
            +
                                ]
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                                control_single_block_samples = [
         | 
| 491 | 
            +
                                    control_single_block_sample + block_sample
         | 
| 492 | 
            +
                                    for control_single_block_sample, block_sample in zip(
         | 
| 493 | 
            +
                                        control_single_block_samples, single_block_samples
         | 
| 494 | 
            +
                                    )
         | 
| 495 | 
            +
                                ]
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    # Regular Multi-ControlNets
         | 
| 498 | 
            +
                    # load all ControlNets into memories
         | 
| 499 | 
            +
                    else:
         | 
| 500 | 
            +
                        for i, (image, mode, scale, controlnet) in enumerate(
         | 
| 501 | 
            +
                            zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
         | 
| 502 | 
            +
                        ):
         | 
| 503 | 
            +
                            block_samples, single_block_samples = controlnet(
         | 
| 504 | 
            +
                                hidden_states=hidden_states,
         | 
| 505 | 
            +
                                controlnet_cond=image,
         | 
| 506 | 
            +
                                controlnet_mode=mode[:, None],
         | 
| 507 | 
            +
                                conditioning_scale=scale,
         | 
| 508 | 
            +
                                timestep=timestep,
         | 
| 509 | 
            +
                                guidance=guidance,
         | 
| 510 | 
            +
                                pooled_projections=pooled_projections,
         | 
| 511 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 512 | 
            +
                                txt_ids=txt_ids,
         | 
| 513 | 
            +
                                img_ids=img_ids,
         | 
| 514 | 
            +
                                joint_attention_kwargs=joint_attention_kwargs,
         | 
| 515 | 
            +
                                return_dict=return_dict,
         | 
| 516 | 
            +
                            )
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                            # merge samples
         | 
| 519 | 
            +
                            if i == 0:
         | 
| 520 | 
            +
                                control_block_samples = block_samples
         | 
| 521 | 
            +
                                control_single_block_samples = single_block_samples
         | 
| 522 | 
            +
                            else:
         | 
| 523 | 
            +
                                if block_samples is not None and control_block_samples is not None:
         | 
| 524 | 
            +
                                    control_block_samples = [
         | 
| 525 | 
            +
                                        control_block_sample + block_sample
         | 
| 526 | 
            +
                                        for control_block_sample, block_sample in zip(control_block_samples, block_samples)
         | 
| 527 | 
            +
                                    ]
         | 
| 528 | 
            +
                                if single_block_samples is not None and control_single_block_samples is not None:
         | 
| 529 | 
            +
                                    control_single_block_samples = [
         | 
| 530 | 
            +
                                        control_single_block_sample + block_sample
         | 
| 531 | 
            +
                                        for control_single_block_sample, block_sample in zip(
         | 
| 532 | 
            +
                                            control_single_block_samples, single_block_samples
         | 
| 533 | 
            +
                                        )
         | 
| 534 | 
            +
                                    ]
         | 
| 535 | 
            +
             | 
| 536 | 
            +
                    return control_block_samples, control_single_block_samples
         | 
| 537 | 
            +
             | 
| 538 | 
            +
             | 
| 539 | 
            +
             | 
| 540 | 
            +
            class BriaMultiControlNetModel(ModelMixin):
         | 
| 541 | 
            +
                r"""
         | 
| 542 | 
            +
                `BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
         | 
| 545 | 
            +
                compatible with `BriaControlNetModel`.
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                Args:
         | 
| 548 | 
            +
                    controlnets (`List[BriaControlNetModel]`):
         | 
| 549 | 
            +
                        Provides additional conditioning to the unet during the denoising process. You must set multiple
         | 
| 550 | 
            +
                        `BriaControlNetModel` as a list.
         | 
| 551 | 
            +
                """
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                def __init__(self, controlnets):
         | 
| 554 | 
            +
                    super().__init__()
         | 
| 555 | 
            +
                    self.nets = nn.ModuleList(controlnets)
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                def forward(
         | 
| 558 | 
            +
                    self,
         | 
| 559 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 560 | 
            +
                    controlnet_cond: List[torch.tensor],
         | 
| 561 | 
            +
                    controlnet_mode: List[torch.tensor],
         | 
| 562 | 
            +
                    conditioning_scale: List[float],
         | 
| 563 | 
            +
                    encoder_hidden_states: torch.Tensor = None,
         | 
| 564 | 
            +
                    pooled_projections: torch.Tensor = None,
         | 
| 565 | 
            +
                    timestep: torch.LongTensor = None,
         | 
| 566 | 
            +
                    img_ids: torch.Tensor = None,
         | 
| 567 | 
            +
                    txt_ids: torch.Tensor = None,
         | 
| 568 | 
            +
                    guidance: torch.Tensor = None,
         | 
| 569 | 
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 570 | 
            +
                    return_dict: bool = True,
         | 
| 571 | 
            +
                ) -> Union[BriaControlNetOutput, Tuple]:
         | 
| 572 | 
            +
                    # ControlNet-Union with multiple conditions
         | 
| 573 | 
            +
                    # only load one ControlNet for saving memories
         | 
| 574 | 
            +
                    if len(self.nets) == 1 and self.nets[0].union:
         | 
| 575 | 
            +
                        controlnet = self.nets[0]
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                        for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
         | 
| 578 | 
            +
                            block_samples, single_block_samples = controlnet(
         | 
| 579 | 
            +
                                hidden_states=hidden_states,
         | 
| 580 | 
            +
                                controlnet_cond=image,
         | 
| 581 | 
            +
                                controlnet_mode=mode[:, None],
         | 
| 582 | 
            +
                                conditioning_scale=scale,
         | 
| 583 | 
            +
                                timestep=timestep,
         | 
| 584 | 
            +
                                guidance=guidance,
         | 
| 585 | 
            +
                                pooled_projections=pooled_projections,
         | 
| 586 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 587 | 
            +
                                txt_ids=txt_ids,
         | 
| 588 | 
            +
                                img_ids=img_ids,
         | 
| 589 | 
            +
                                joint_attention_kwargs=joint_attention_kwargs,
         | 
| 590 | 
            +
                                return_dict=return_dict,
         | 
| 591 | 
            +
                            )
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                            # merge samples
         | 
| 594 | 
            +
                            if i == 0:
         | 
| 595 | 
            +
                                control_block_samples = block_samples
         | 
| 596 | 
            +
                                control_single_block_samples = single_block_samples
         | 
| 597 | 
            +
                            else:
         | 
| 598 | 
            +
                                control_block_samples = [
         | 
| 599 | 
            +
                                    control_block_sample + block_sample
         | 
| 600 | 
            +
                                    for control_block_sample, block_sample in zip(control_block_samples, block_samples)
         | 
| 601 | 
            +
                                ]
         | 
| 602 | 
            +
             | 
| 603 | 
            +
                                control_single_block_samples = [
         | 
| 604 | 
            +
                                    control_single_block_sample + block_sample
         | 
| 605 | 
            +
                                    for control_single_block_sample, block_sample in zip(
         | 
| 606 | 
            +
                                        control_single_block_samples, single_block_samples
         | 
| 607 | 
            +
                                    )
         | 
| 608 | 
            +
                                ]
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    # Regular Multi-ControlNets
         | 
| 611 | 
            +
                    # load all ControlNets into memories
         | 
| 612 | 
            +
                    else:
         | 
| 613 | 
            +
                        for i, (image, mode, scale, controlnet) in enumerate(
         | 
| 614 | 
            +
                            zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
         | 
| 615 | 
            +
                        ):
         | 
| 616 | 
            +
                            block_samples, single_block_samples = controlnet(
         | 
| 617 | 
            +
                                hidden_states=hidden_states,
         | 
| 618 | 
            +
                                controlnet_cond=image,
         | 
| 619 | 
            +
                                controlnet_mode=mode[:, None],
         | 
| 620 | 
            +
                                conditioning_scale=scale,
         | 
| 621 | 
            +
                                timestep=timestep,
         | 
| 622 | 
            +
                                guidance=guidance,
         | 
| 623 | 
            +
                                pooled_projections=pooled_projections,
         | 
| 624 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 625 | 
            +
                                txt_ids=txt_ids,
         | 
| 626 | 
            +
                                img_ids=img_ids,
         | 
| 627 | 
            +
                                joint_attention_kwargs=joint_attention_kwargs,
         | 
| 628 | 
            +
                                return_dict=return_dict,
         | 
| 629 | 
            +
                            )
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                            # merge samples
         | 
| 632 | 
            +
                            if i == 0:
         | 
| 633 | 
            +
                                control_block_samples = block_samples
         | 
| 634 | 
            +
                                control_single_block_samples = single_block_samples
         | 
| 635 | 
            +
                            else:
         | 
| 636 | 
            +
                                if block_samples is not None and control_block_samples is not None:
         | 
| 637 | 
            +
                                    control_block_samples = [
         | 
| 638 | 
            +
                                        control_block_sample + block_sample
         | 
| 639 | 
            +
                                        for control_block_sample, block_sample in zip(control_block_samples, block_samples)
         | 
| 640 | 
            +
                                    ]
         | 
| 641 | 
            +
                                if single_block_samples is not None and control_single_block_samples is not None:
         | 
| 642 | 
            +
                                    control_single_block_samples = [
         | 
| 643 | 
            +
                                        control_single_block_sample + block_sample
         | 
| 644 | 
            +
                                        for control_single_block_sample, block_sample in zip(
         | 
| 645 | 
            +
                                            control_single_block_samples, single_block_samples
         | 
| 646 | 
            +
                                        )
         | 
| 647 | 
            +
                                    ]
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                    return control_block_samples, control_single_block_samples
         | 
    	
        pipeline_bria.py
    ADDED
    
    | @@ -0,0 +1,558 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, retrieve_timesteps
         | 
| 2 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Union
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from transformers import (
         | 
| 7 | 
            +
                T5EncoderModel,
         | 
| 8 | 
            +
                T5TokenizerFast,
         | 
| 9 | 
            +
            )
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            from diffusers.image_processor import VaeImageProcessor
         | 
| 12 | 
            +
            from diffusers import AutoencoderKL , DDIMScheduler, EulerAncestralDiscreteScheduler
         | 
| 13 | 
            +
            from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
         | 
| 14 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 15 | 
            +
            from diffusers.loaders import FluxLoraLoaderMixin
         | 
| 16 | 
            +
            from diffusers.utils import (
         | 
| 17 | 
            +
                USE_PEFT_BACKEND,
         | 
| 18 | 
            +
                is_torch_xla_available,
         | 
| 19 | 
            +
                logging,
         | 
| 20 | 
            +
                replace_example_docstring,
         | 
| 21 | 
            +
                scale_lora_layers,
         | 
| 22 | 
            +
                unscale_lora_layers,
         | 
| 23 | 
            +
            )
         | 
| 24 | 
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         | 
| 25 | 
            +
            from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
         | 
| 26 | 
            +
            from transformer_bria import BriaTransformer2DModel
         | 
| 27 | 
            +
            from bria_utils import get_t5_prompt_embeds, get_original_sigmas, is_ng_none
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            if is_torch_xla_available():
         | 
| 30 | 
            +
                import torch_xla.core.xla_model as xm
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                XLA_AVAILABLE = True
         | 
| 33 | 
            +
            else:
         | 
| 34 | 
            +
                XLA_AVAILABLE = False
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 40 | 
            +
                Examples:
         | 
| 41 | 
            +
                    ```py
         | 
| 42 | 
            +
                    >>> import torch
         | 
| 43 | 
            +
                    >>> from diffusers import StableDiffusion3Pipeline
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    >>> pipe = StableDiffusion3Pipeline.from_pretrained(
         | 
| 46 | 
            +
                    ...     "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
         | 
| 47 | 
            +
                    ... )
         | 
| 48 | 
            +
                    >>> pipe.to("cuda")
         | 
| 49 | 
            +
                    >>> prompt = "A cat holding a sign that says hello world"
         | 
| 50 | 
            +
                    >>> image = pipe(prompt).images[0]
         | 
| 51 | 
            +
                    >>> image.save("sd3.png")
         | 
| 52 | 
            +
                    ```
         | 
| 53 | 
            +
            """
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            T5_PRECISION = torch.float16
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            """
         | 
| 58 | 
            +
            Based on FluxPipeline with several changes:
         | 
| 59 | 
            +
            - no pooled embeddings
         | 
| 60 | 
            +
            - We use zero padding for prompts
         | 
| 61 | 
            +
            - No guidance embedding since this is not a distilled version
         | 
| 62 | 
            +
            """
         | 
| 63 | 
            +
            class BriaPipeline(FluxPipeline):
         | 
| 64 | 
            +
                r"""
         | 
| 65 | 
            +
                Args:
         | 
| 66 | 
            +
                    transformer ([`SD3Transformer2DModel`]):
         | 
| 67 | 
            +
                        Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
         | 
| 68 | 
            +
                    scheduler ([`FlowMatchEulerDiscreteScheduler`]):
         | 
| 69 | 
            +
                        A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
         | 
| 70 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 71 | 
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         | 
| 72 | 
            +
                    text_encoder ([`T5EncoderModel`]):
         | 
| 73 | 
            +
                        Frozen text-encoder. Stable Diffusion 3 uses
         | 
| 74 | 
            +
                        [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
         | 
| 75 | 
            +
                        [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
         | 
| 76 | 
            +
                    tokenizer (`T5TokenizerFast`):
         | 
| 77 | 
            +
                        Tokenizer of class
         | 
| 78 | 
            +
                        [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
         | 
| 79 | 
            +
                """
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                # model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae"
         | 
| 82 | 
            +
                # _optional_components = []
         | 
| 83 | 
            +
                # _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                def __init__(
         | 
| 86 | 
            +
                    self,
         | 
| 87 | 
            +
                    transformer: BriaTransformer2DModel,
         | 
| 88 | 
            +
                    scheduler: Union[FlowMatchEulerDiscreteScheduler,KarrasDiffusionSchedulers],
         | 
| 89 | 
            +
                    vae: AutoencoderKL,
         | 
| 90 | 
            +
                    text_encoder: T5EncoderModel,
         | 
| 91 | 
            +
                    tokenizer: T5TokenizerFast
         | 
| 92 | 
            +
                ):
         | 
| 93 | 
            +
                    self.register_modules(
         | 
| 94 | 
            +
                        vae=vae,
         | 
| 95 | 
            +
                        text_encoder=text_encoder,
         | 
| 96 | 
            +
                        tokenizer=tokenizer,
         | 
| 97 | 
            +
                        transformer=transformer,
         | 
| 98 | 
            +
                        scheduler=scheduler,
         | 
| 99 | 
            +
                    )
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    # TODO - why different than offical flux (-1)
         | 
| 102 | 
            +
                    self.vae_scale_factor = (
         | 
| 103 | 
            +
                        2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
         | 
| 104 | 
            +
                    )
         | 
| 105 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         | 
| 106 | 
            +
                    self.default_sample_size = 64 # due to patchify=> 128,128 => res of 1k,1k
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    # T5 is senstive to precision so we use the precision used for precompute and cast as needed
         | 
| 109 | 
            +
                    self.text_encoder = self.text_encoder.to(dtype=T5_PRECISION)
         | 
| 110 | 
            +
                    for block in self.text_encoder.encoder.block:
         | 
| 111 | 
            +
                        block.layer[-1].DenseReluDense.wo.to(dtype=torch.float32)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def encode_prompt(
         | 
| 114 | 
            +
                    self,
         | 
| 115 | 
            +
                    prompt: Union[str, List[str]],
         | 
| 116 | 
            +
                    device: Optional[torch.device] = None,
         | 
| 117 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 118 | 
            +
                    do_classifier_free_guidance: bool = True,
         | 
| 119 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 120 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 121 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 122 | 
            +
                    max_sequence_length: int = 128,
         | 
| 123 | 
            +
                    lora_scale: Optional[float] = None,
         | 
| 124 | 
            +
                ):
         | 
| 125 | 
            +
                    r"""
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    Args:
         | 
| 128 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 129 | 
            +
                            prompt to be encoded
         | 
| 130 | 
            +
                        device: (`torch.device`):
         | 
| 131 | 
            +
                            torch device
         | 
| 132 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 133 | 
            +
                            number of images that should be generated per prompt
         | 
| 134 | 
            +
                        do_classifier_free_guidance (`bool`):
         | 
| 135 | 
            +
                            whether to use classifier free guidance or not
         | 
| 136 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 137 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 138 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 139 | 
            +
                            less than `1`).
         | 
| 140 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 141 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 142 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 143 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 144 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 145 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 146 | 
            +
                            argument.
         | 
| 147 | 
            +
                    """
         | 
| 148 | 
            +
                    device = device or self._execution_device
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    # set lora scale so that monkey patched LoRA
         | 
| 151 | 
            +
                    # function of text encoder can correctly access it
         | 
| 152 | 
            +
                    if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
         | 
| 153 | 
            +
                        self._lora_scale = lora_scale
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                        # dynamically adjust the LoRA scale
         | 
| 156 | 
            +
                        if self.text_encoder is not None and USE_PEFT_BACKEND:
         | 
| 157 | 
            +
                            scale_lora_layers(self.text_encoder, lora_scale)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 160 | 
            +
                    if prompt is not None:
         | 
| 161 | 
            +
                        batch_size = len(prompt)
         | 
| 162 | 
            +
                    else:
         | 
| 163 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    if prompt_embeds is None:
         | 
| 166 | 
            +
                        prompt_embeds = get_t5_prompt_embeds(
         | 
| 167 | 
            +
                            self.tokenizer,
         | 
| 168 | 
            +
                            self.text_encoder,
         | 
| 169 | 
            +
                            prompt=prompt,
         | 
| 170 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 171 | 
            +
                            max_sequence_length=max_sequence_length,
         | 
| 172 | 
            +
                            device=device,
         | 
| 173 | 
            +
                        ).to(dtype=self.transformer.dtype)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None:
         | 
| 176 | 
            +
                        if not is_ng_none(negative_prompt):
         | 
| 177 | 
            +
                            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                            if prompt is not None and type(prompt) is not type(negative_prompt):
         | 
| 180 | 
            +
                                raise TypeError(
         | 
| 181 | 
            +
                                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 182 | 
            +
                                    f" {type(prompt)}."
         | 
| 183 | 
            +
                                )
         | 
| 184 | 
            +
                            elif batch_size != len(negative_prompt):
         | 
| 185 | 
            +
                                raise ValueError(
         | 
| 186 | 
            +
                                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 187 | 
            +
                                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 188 | 
            +
                                    " the batch size of `prompt`."
         | 
| 189 | 
            +
                                )
         | 
| 190 | 
            +
                            
         | 
| 191 | 
            +
                            negative_prompt_embeds = get_t5_prompt_embeds(
         | 
| 192 | 
            +
                                self.tokenizer,
         | 
| 193 | 
            +
                                self.text_encoder,
         | 
| 194 | 
            +
                                prompt=negative_prompt,
         | 
| 195 | 
            +
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 196 | 
            +
                                max_sequence_length=max_sequence_length,
         | 
| 197 | 
            +
                                device=device,
         | 
| 198 | 
            +
                            ).to(dtype=self.transformer.dtype)
         | 
| 199 | 
            +
                        else:
         | 
| 200 | 
            +
                            negative_prompt_embeds = torch.zeros_like(prompt_embeds)    
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    if self.text_encoder is not None:
         | 
| 203 | 
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 204 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 205 | 
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
         | 
| 208 | 
            +
                    text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
         | 
| 209 | 
            +
                    text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    return prompt_embeds, negative_prompt_embeds, text_ids
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                @property
         | 
| 214 | 
            +
                def guidance_scale(self):
         | 
| 215 | 
            +
                    return self._guidance_scale
         | 
| 216 | 
            +
             | 
| 217 | 
            +
             | 
| 218 | 
            +
                # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 219 | 
            +
                # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 220 | 
            +
                # corresponds to doing no classifier free guidance.
         | 
| 221 | 
            +
                @property
         | 
| 222 | 
            +
                def do_classifier_free_guidance(self):
         | 
| 223 | 
            +
                    return self._guidance_scale > 1
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                @property
         | 
| 226 | 
            +
                def joint_attention_kwargs(self):
         | 
| 227 | 
            +
                    return self._joint_attention_kwargs
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                @property
         | 
| 230 | 
            +
                def num_timesteps(self):
         | 
| 231 | 
            +
                    return self._num_timesteps
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                @property
         | 
| 234 | 
            +
                def interrupt(self):
         | 
| 235 | 
            +
                    return self._interrupt
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                @torch.no_grad()
         | 
| 238 | 
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 239 | 
            +
                def __call__(
         | 
| 240 | 
            +
                    self,
         | 
| 241 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 242 | 
            +
                    height: Optional[int] = None,
         | 
| 243 | 
            +
                    width: Optional[int] = None,
         | 
| 244 | 
            +
                    num_inference_steps: int = 30,
         | 
| 245 | 
            +
                    timesteps: List[int] = None,
         | 
| 246 | 
            +
                    guidance_scale: float = 5,
         | 
| 247 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 248 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 249 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 250 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 251 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 252 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 253 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 254 | 
            +
                    return_dict: bool = True,
         | 
| 255 | 
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 256 | 
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 257 | 
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 258 | 
            +
                    max_sequence_length: int = 128,
         | 
| 259 | 
            +
                    clip_value:Union[None,float] = None,
         | 
| 260 | 
            +
                    normalize:bool = False
         | 
| 261 | 
            +
                ):
         | 
| 262 | 
            +
                    r"""
         | 
| 263 | 
            +
                    Function invoked when calling the pipeline for generation.
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    Args:
         | 
| 266 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 267 | 
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         | 
| 268 | 
            +
                            instead.
         | 
| 269 | 
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 270 | 
            +
                            The height in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 271 | 
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 272 | 
            +
                            The width in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 273 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 274 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 275 | 
            +
                            expense of slower inference.
         | 
| 276 | 
            +
                        timesteps (`List[int]`, *optional*):
         | 
| 277 | 
            +
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         | 
| 278 | 
            +
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         | 
| 279 | 
            +
                            passed will be used. Must be in descending order.
         | 
| 280 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         | 
| 281 | 
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         | 
| 282 | 
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         | 
| 283 | 
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         | 
| 284 | 
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         | 
| 285 | 
            +
                            usually at the expense of lower image quality.
         | 
| 286 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 287 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 288 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 289 | 
            +
                            less than `1`).
         | 
| 290 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 291 | 
            +
                            The number of images to generate per prompt.
         | 
| 292 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 293 | 
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         | 
| 294 | 
            +
                            to make generation deterministic.
         | 
| 295 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 296 | 
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 297 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 298 | 
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         | 
| 299 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 300 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 301 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 302 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 303 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 304 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 305 | 
            +
                            argument.
         | 
| 306 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 307 | 
            +
                            The output format of the generate image. Choose between
         | 
| 308 | 
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         | 
| 309 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 310 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
         | 
| 311 | 
            +
                            of a plain tuple.
         | 
| 312 | 
            +
                        joint_attention_kwargs (`dict`, *optional*):
         | 
| 313 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 314 | 
            +
                            `self.processor` in
         | 
| 315 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 316 | 
            +
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 317 | 
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 318 | 
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 319 | 
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 320 | 
            +
                            `callback_on_step_end_tensor_inputs`.
         | 
| 321 | 
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 322 | 
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 323 | 
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 324 | 
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         | 
| 325 | 
            +
                        max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    Examples:
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    Returns:
         | 
| 330 | 
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
         | 
| 331 | 
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
         | 
| 332 | 
            +
                        `tuple`. When returning a tuple, the first element is a list with the generated images.
         | 
| 333 | 
            +
                    """
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         | 
| 336 | 
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 339 | 
            +
                    self.check_inputs(
         | 
| 340 | 
            +
                        prompt=prompt,
         | 
| 341 | 
            +
                        height=height,
         | 
| 342 | 
            +
                        width=width,
         | 
| 343 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 344 | 
            +
                        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
         | 
| 345 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 346 | 
            +
                    )
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 349 | 
            +
                    self._joint_attention_kwargs = joint_attention_kwargs
         | 
| 350 | 
            +
                    self._interrupt = False
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    # 2. Define call parameters
         | 
| 353 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 354 | 
            +
                        batch_size = 1
         | 
| 355 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 356 | 
            +
                        batch_size = len(prompt)
         | 
| 357 | 
            +
                    else:
         | 
| 358 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    device = self._execution_device
         | 
| 361 | 
            +
                    
         | 
| 362 | 
            +
                    lora_scale = (
         | 
| 363 | 
            +
                        self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
         | 
| 364 | 
            +
                    )
         | 
| 365 | 
            +
                    
         | 
| 366 | 
            +
                    (
         | 
| 367 | 
            +
                        prompt_embeds,
         | 
| 368 | 
            +
                        negative_prompt_embeds,
         | 
| 369 | 
            +
                        text_ids
         | 
| 370 | 
            +
                    ) = self.encode_prompt(
         | 
| 371 | 
            +
                        prompt=prompt,
         | 
| 372 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 373 | 
            +
                        do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 374 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 375 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 376 | 
            +
                        device=device,
         | 
| 377 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 378 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 379 | 
            +
                        lora_scale=lora_scale,
         | 
| 380 | 
            +
                    )
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                    if self.do_classifier_free_guidance:
         | 
| 383 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 384 | 
            +
                        
         | 
| 385 | 
            +
                    # 4. Prepare timesteps
         | 
| 386 | 
            +
                    # Sample from training sigmas
         | 
| 387 | 
            +
                    if isinstance(self.scheduler,DDIMScheduler) or isinstance(self.scheduler,EulerAncestralDiscreteScheduler):
         | 
| 388 | 
            +
                        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None, None)
         | 
| 389 | 
            +
                    else:
         | 
| 390 | 
            +
                        sigmas = get_original_sigmas(num_train_timesteps=self.scheduler.config.num_train_timesteps,num_inference_steps=num_inference_steps)    
         | 
| 391 | 
            +
                        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps,sigmas=sigmas)
         | 
| 392 | 
            +
                    
         | 
| 393 | 
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         | 
| 394 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    # 5. Prepare latent variables
         | 
| 397 | 
            +
                    num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4
         | 
| 398 | 
            +
                    latents, latent_image_ids = self.prepare_latents(
         | 
| 399 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 400 | 
            +
                        num_channels_latents,
         | 
| 401 | 
            +
                        height,
         | 
| 402 | 
            +
                        width,
         | 
| 403 | 
            +
                        prompt_embeds.dtype,
         | 
| 404 | 
            +
                        device,
         | 
| 405 | 
            +
                        generator,
         | 
| 406 | 
            +
                        latents,
         | 
| 407 | 
            +
                    )
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    # Supprot different diffusers versions
         | 
| 410 | 
            +
                    if len(latent_image_ids.shape)==2:
         | 
| 411 | 
            +
                        text_ids=text_ids.squeeze()
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    # 6. Denoising loop
         | 
| 414 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 415 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 416 | 
            +
                            if self.interrupt:
         | 
| 417 | 
            +
                                continue
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 420 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 421 | 
            +
                            if type(self.scheduler)!=FlowMatchEulerDiscreteScheduler:
         | 
| 422 | 
            +
                                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 425 | 
            +
                            timestep = t.expand(latent_model_input.shape[0])
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                            # This is predicts "v" from flow-matching or eps from diffusion
         | 
| 428 | 
            +
                            noise_pred = self.transformer(
         | 
| 429 | 
            +
                                hidden_states=latent_model_input,
         | 
| 430 | 
            +
                                timestep=timestep,
         | 
| 431 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 432 | 
            +
                                joint_attention_kwargs=self.joint_attention_kwargs,
         | 
| 433 | 
            +
                                return_dict=False,
         | 
| 434 | 
            +
                                txt_ids=text_ids,
         | 
| 435 | 
            +
                                img_ids=latent_image_ids,
         | 
| 436 | 
            +
                            )[0]
         | 
| 437 | 
            +
               
         | 
| 438 | 
            +
                            # perform guidance
         | 
| 439 | 
            +
                            if self.do_classifier_free_guidance:
         | 
| 440 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 441 | 
            +
                                cfg_noise_pred_text = noise_pred_text.std()
         | 
| 442 | 
            +
                                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                            if normalize:
         | 
| 445 | 
            +
                                noise_pred = noise_pred * (0.7 *(cfg_noise_pred_text/noise_pred.std())) + 0.3 * noise_pred
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                            if clip_value:
         | 
| 448 | 
            +
                                assert clip_value>0
         | 
| 449 | 
            +
                                noise_pred = noise_pred.clip(-clip_value,clip_value)
         | 
| 450 | 
            +
                         
         | 
| 451 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 452 | 
            +
                            latents_dtype = latents.dtype
         | 
| 453 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
         | 
| 454 | 
            +
                            
         | 
| 455 | 
            +
                          
         | 
| 456 | 
            +
                            # if latents.std().item()>2:
         | 
| 457 | 
            +
                            #     print('Warning')
         | 
| 458 | 
            +
                            
         | 
| 459 | 
            +
                            # print(t.item(),latents.mean().item(),latents.std().item())
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                            if latents.dtype != latents_dtype:
         | 
| 462 | 
            +
                                if torch.backends.mps.is_available():
         | 
| 463 | 
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         | 
| 464 | 
            +
                                    latents = latents.to(latents_dtype)
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                            if callback_on_step_end is not None:
         | 
| 467 | 
            +
                                callback_kwargs = {}
         | 
| 468 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 469 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 470 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 473 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 474 | 
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         | 
| 475 | 
            +
                                
         | 
| 476 | 
            +
                            # call the callback, if provided
         | 
| 477 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 478 | 
            +
                                progress_bar.update()
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                            if XLA_AVAILABLE:
         | 
| 481 | 
            +
                                xm.mark_step()
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    if output_type == "latent":
         | 
| 484 | 
            +
                        image = latents
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                    else:
         | 
| 487 | 
            +
                        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
         | 
| 488 | 
            +
                        latents = (latents.to(dtype=torch.float32) / self.vae.config.scaling_factor) + self.vae.config.shift_factor
         | 
| 489 | 
            +
                        image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
         | 
| 490 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    # Offload all models
         | 
| 493 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    if not return_dict:
         | 
| 496 | 
            +
                        return (image,)
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                    return FluxPipelineOutput(images=image)
         | 
| 499 | 
            +
                
         | 
| 500 | 
            +
                def check_inputs(
         | 
| 501 | 
            +
                    self,
         | 
| 502 | 
            +
                    prompt,
         | 
| 503 | 
            +
                    height,
         | 
| 504 | 
            +
                    width,
         | 
| 505 | 
            +
                    negative_prompt=None,
         | 
| 506 | 
            +
                    prompt_embeds=None,
         | 
| 507 | 
            +
                    negative_prompt_embeds=None,
         | 
| 508 | 
            +
                    callback_on_step_end_tensor_inputs=None,
         | 
| 509 | 
            +
                    max_sequence_length=None,
         | 
| 510 | 
            +
                ):
         | 
| 511 | 
            +
                    if height % 8 != 0 or width % 8 != 0:
         | 
| 512 | 
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         | 
| 515 | 
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         | 
| 516 | 
            +
                    ):
         | 
| 517 | 
            +
                        raise ValueError(
         | 
| 518 | 
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         | 
| 519 | 
            +
                        )
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                    if prompt is not None and prompt_embeds is not None:
         | 
| 522 | 
            +
                        raise ValueError(
         | 
| 523 | 
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 524 | 
            +
                            " only forward one of the two."
         | 
| 525 | 
            +
                        )
         | 
| 526 | 
            +
                    elif prompt is None and prompt_embeds is None:
         | 
| 527 | 
            +
                        raise ValueError(
         | 
| 528 | 
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         | 
| 529 | 
            +
                        )
         | 
| 530 | 
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 531 | 
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         | 
| 534 | 
            +
                        raise ValueError(
         | 
| 535 | 
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         | 
| 536 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 537 | 
            +
                        )
         | 
| 538 | 
            +
                   
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         | 
| 541 | 
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         | 
| 542 | 
            +
                            raise ValueError(
         | 
| 543 | 
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         | 
| 544 | 
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         | 
| 545 | 
            +
                                f" {negative_prompt_embeds.shape}."
         | 
| 546 | 
            +
                            )
         | 
| 547 | 
            +
             | 
| 548 | 
            +
                    if max_sequence_length is not None and max_sequence_length > 512:
         | 
| 549 | 
            +
                        raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                def to(self, *args, **kwargs):
         | 
| 552 | 
            +
                    DiffusionPipeline.to(self, *args, **kwargs)
         | 
| 553 | 
            +
                    # T5 is senstive to precision so we use the precision used for precompute and cast as needed
         | 
| 554 | 
            +
                    self.text_encoder = self.text_encoder.to(dtype=T5_PRECISION)
         | 
| 555 | 
            +
                    for block in self.text_encoder.encoder.block:
         | 
| 556 | 
            +
                        block.layer[-1].DenseReluDense.wo.to(dtype=torch.float32)
         | 
| 557 | 
            +
                    
         | 
| 558 | 
            +
                    return self
         | 
    	
        pipeline_bria_controlnet.py
    ADDED
    
    | @@ -0,0 +1,532 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Union
         | 
| 16 | 
            +
            import torch
         | 
| 17 | 
            +
            from transformers import (
         | 
| 18 | 
            +
                T5EncoderModel,
         | 
| 19 | 
            +
                T5TokenizerFast,
         | 
| 20 | 
            +
            )
         | 
| 21 | 
            +
            from diffusers.image_processor import PipelineImageInput
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from diffusers import AutoencoderKL  # Waiting for diffusers udpdate
         | 
| 24 | 
            +
            from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
         | 
| 25 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 26 | 
            +
            from diffusers.utils import logging
         | 
| 27 | 
            +
            from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
         | 
| 28 | 
            +
            from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps
         | 
| 29 | 
            +
            from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            from pipeline_bria import BriaPipeline
         | 
| 32 | 
            +
            from transformer_bria import BriaTransformer2DModel
         | 
| 33 | 
            +
            from bria_utils import get_original_sigmas
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            XLA_AVAILABLE = False
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            class BriaControlNetPipeline(BriaPipeline):
         | 
| 42 | 
            +
                r"""
         | 
| 43 | 
            +
                Args:
         | 
| 44 | 
            +
                    transformer ([`SD3Transformer2DModel`]):
         | 
| 45 | 
            +
                        Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
         | 
| 46 | 
            +
                    scheduler ([`FlowMatchEulerDiscreteScheduler`]):
         | 
| 47 | 
            +
                        A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
         | 
| 48 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 49 | 
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         | 
| 50 | 
            +
                    text_encoder ([`T5EncoderModel`]):
         | 
| 51 | 
            +
                        Frozen text-encoder. Stable Diffusion 3 uses
         | 
| 52 | 
            +
                        [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
         | 
| 53 | 
            +
                        [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
         | 
| 54 | 
            +
                    tokenizer (`T5TokenizerFast`):
         | 
| 55 | 
            +
                        Tokenizer of class
         | 
| 56 | 
            +
                        [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
         | 
| 57 | 
            +
                """
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae"
         | 
| 60 | 
            +
                _optional_components = []
         | 
| 61 | 
            +
                _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                def __init__(  # EYAL - removed clip text encoder + tokenizer
         | 
| 64 | 
            +
                    self,
         | 
| 65 | 
            +
                    transformer: BriaTransformer2DModel,
         | 
| 66 | 
            +
                    scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
         | 
| 67 | 
            +
                    vae: AutoencoderKL,
         | 
| 68 | 
            +
                    text_encoder: T5EncoderModel,
         | 
| 69 | 
            +
                    tokenizer: T5TokenizerFast,
         | 
| 70 | 
            +
                    controlnet: BriaControlNetModel,
         | 
| 71 | 
            +
                ):
         | 
| 72 | 
            +
                    super().__init__(
         | 
| 73 | 
            +
                        transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
                    self.register_modules(controlnet=controlnet)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                def prepare_image(
         | 
| 78 | 
            +
                    self,
         | 
| 79 | 
            +
                    image,
         | 
| 80 | 
            +
                    width,
         | 
| 81 | 
            +
                    height,
         | 
| 82 | 
            +
                    batch_size,
         | 
| 83 | 
            +
                    num_images_per_prompt,
         | 
| 84 | 
            +
                    device,
         | 
| 85 | 
            +
                    dtype,
         | 
| 86 | 
            +
                    do_classifier_free_guidance=False,
         | 
| 87 | 
            +
                    guess_mode=False,
         | 
| 88 | 
            +
                ):
         | 
| 89 | 
            +
                    if isinstance(image, torch.Tensor):
         | 
| 90 | 
            +
                        pass
         | 
| 91 | 
            +
                    else:
         | 
| 92 | 
            +
                        image = self.image_processor.preprocess(image, height=height, width=width)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    image_batch_size = image.shape[0]
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                    if image_batch_size == 1:
         | 
| 97 | 
            +
                        repeat_by = batch_size
         | 
| 98 | 
            +
                    else:
         | 
| 99 | 
            +
                        # image batch size is the same as prompt batch size
         | 
| 100 | 
            +
                        repeat_by = num_images_per_prompt
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    image = image.repeat_interleave(repeat_by, dim=0)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    if do_classifier_free_guidance and not guess_mode:
         | 
| 107 | 
            +
                        image = torch.cat([image] * 2)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                    return image
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
         | 
| 112 | 
            +
                    num_channels_latents = self.transformer.config.in_channels // 4
         | 
| 113 | 
            +
                    control_image = self.prepare_image(
         | 
| 114 | 
            +
                        image=control_image,
         | 
| 115 | 
            +
                        width=width,
         | 
| 116 | 
            +
                        height=height,
         | 
| 117 | 
            +
                        batch_size=batch_size * num_images_per_prompt,
         | 
| 118 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 119 | 
            +
                        device=device,
         | 
| 120 | 
            +
                        dtype=self.vae.dtype,
         | 
| 121 | 
            +
                    )
         | 
| 122 | 
            +
                    height, width = control_image.shape[-2:]
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    # vae encode
         | 
| 125 | 
            +
                    control_image = self.vae.encode(control_image).latent_dist.sample()
         | 
| 126 | 
            +
                    control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    # pack
         | 
| 129 | 
            +
                    height_control_image, width_control_image = control_image.shape[2:]
         | 
| 130 | 
            +
                    control_image = self._pack_latents(
         | 
| 131 | 
            +
                        control_image,
         | 
| 132 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 133 | 
            +
                        num_channels_latents,
         | 
| 134 | 
            +
                        height_control_image,
         | 
| 135 | 
            +
                        width_control_image,
         | 
| 136 | 
            +
                    )
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    # Here we ensure that `control_mode` has the same length as the control_image.
         | 
| 139 | 
            +
                    if control_mode is not None:
         | 
| 140 | 
            +
                        if not isinstance(control_mode, int):
         | 
| 141 | 
            +
                            raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`")
         | 
| 142 | 
            +
                        control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
         | 
| 143 | 
            +
                        control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    return control_image, control_mode
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                def prepare_multi_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
         | 
| 148 | 
            +
                    num_channels_latents = self.transformer.config.in_channels // 4
         | 
| 149 | 
            +
                    control_images = []
         | 
| 150 | 
            +
                    for i, control_image_ in enumerate(control_image):
         | 
| 151 | 
            +
                        control_image_ = self.prepare_image(
         | 
| 152 | 
            +
                            image=control_image_,
         | 
| 153 | 
            +
                            width=width,
         | 
| 154 | 
            +
                            height=height,
         | 
| 155 | 
            +
                            batch_size=batch_size * num_images_per_prompt,
         | 
| 156 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 157 | 
            +
                            device=device,
         | 
| 158 | 
            +
                            dtype=self.vae.dtype,
         | 
| 159 | 
            +
                        )
         | 
| 160 | 
            +
                        height, width = control_image_.shape[-2:]
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                        # vae encode
         | 
| 163 | 
            +
                        control_image_ = self.vae.encode(control_image_).latent_dist.sample()
         | 
| 164 | 
            +
                        control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                        # pack
         | 
| 167 | 
            +
                        height_control_image, width_control_image = control_image_.shape[2:]
         | 
| 168 | 
            +
                        control_image_ = self._pack_latents(
         | 
| 169 | 
            +
                            control_image_,
         | 
| 170 | 
            +
                            batch_size * num_images_per_prompt,
         | 
| 171 | 
            +
                            num_channels_latents,
         | 
| 172 | 
            +
                            height_control_image,
         | 
| 173 | 
            +
                            width_control_image,
         | 
| 174 | 
            +
                        )
         | 
| 175 | 
            +
                        control_images.append(control_image_)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    control_image = control_images
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    # Here we ensure that `control_mode` has the same length as the control_image.
         | 
| 180 | 
            +
                    if isinstance(control_mode, list) and len(control_mode) != len(control_image):
         | 
| 181 | 
            +
                        raise ValueError(
         | 
| 182 | 
            +
                            "For Multi-ControlNet, `control_mode` must be a list of the same "
         | 
| 183 | 
            +
                            + " length as the number of controlnets (control images) specified"
         | 
| 184 | 
            +
                        )
         | 
| 185 | 
            +
                    if not isinstance(control_mode, list):
         | 
| 186 | 
            +
                        control_mode = [control_mode] * len(control_image)
         | 
| 187 | 
            +
                    # set control mode
         | 
| 188 | 
            +
                    control_modes = []
         | 
| 189 | 
            +
                    for cmode in control_mode:
         | 
| 190 | 
            +
                        if cmode is None:
         | 
| 191 | 
            +
                            cmode = -1
         | 
| 192 | 
            +
                        control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
         | 
| 193 | 
            +
                        control_modes.append(control_mode)
         | 
| 194 | 
            +
                    control_mode = control_modes
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    return control_image, control_mode
         | 
| 197 | 
            +
                
         | 
| 198 | 
            +
                def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end):
         | 
| 199 | 
            +
                    controlnet_keep = []
         | 
| 200 | 
            +
                    for i in range(len(timesteps)):
         | 
| 201 | 
            +
                        keeps = [
         | 
| 202 | 
            +
                            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
         | 
| 203 | 
            +
                            for s, e in zip(control_guidance_start, control_guidance_end)
         | 
| 204 | 
            +
                        ]
         | 
| 205 | 
            +
                        controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps)
         | 
| 206 | 
            +
                    return controlnet_keep
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                def get_control_start_end(self, control_guidance_start, control_guidance_end):
         | 
| 209 | 
            +
                    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
         | 
| 210 | 
            +
                        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
         | 
| 211 | 
            +
                    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
         | 
| 212 | 
            +
                        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
         | 
| 213 | 
            +
                    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
         | 
| 214 | 
            +
                        mult = 1  # TODO - why is this 1?
         | 
| 215 | 
            +
                        control_guidance_start, control_guidance_end = (
         | 
| 216 | 
            +
                            mult * [control_guidance_start],
         | 
| 217 | 
            +
                            mult * [control_guidance_end],
         | 
| 218 | 
            +
                        )
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    return control_guidance_start, control_guidance_end
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                @torch.no_grad()
         | 
| 223 | 
            +
                def __call__(
         | 
| 224 | 
            +
                    self,
         | 
| 225 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 226 | 
            +
                    height: Optional[int] = None,
         | 
| 227 | 
            +
                    width: Optional[int] = None,
         | 
| 228 | 
            +
                    num_inference_steps: int = 30,
         | 
| 229 | 
            +
                    timesteps: List[int] = None,
         | 
| 230 | 
            +
                    guidance_scale: float = 3.5,
         | 
| 231 | 
            +
                    control_guidance_start: Union[float, List[float]] = 0.0,
         | 
| 232 | 
            +
                    control_guidance_end: Union[float, List[float]] = 1.0,
         | 
| 233 | 
            +
                    control_image: Optional[PipelineImageInput] = None,
         | 
| 234 | 
            +
                    control_mode: Optional[Union[int, List[int]]] = None,
         | 
| 235 | 
            +
                    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
         | 
| 236 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 237 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 238 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 239 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 240 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 241 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 242 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 243 | 
            +
                    return_dict: bool = True,
         | 
| 244 | 
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 245 | 
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 246 | 
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 247 | 
            +
                    max_sequence_length: int = 128,
         | 
| 248 | 
            +
                ):
         | 
| 249 | 
            +
                    r"""
         | 
| 250 | 
            +
                    Function invoked when calling the pipeline for generation.
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    Args:
         | 
| 253 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 254 | 
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         | 
| 255 | 
            +
                            instead.
         | 
| 256 | 
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 257 | 
            +
                            The height in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 258 | 
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 259 | 
            +
                            The width in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 260 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 261 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 262 | 
            +
                            expense of slower inference.
         | 
| 263 | 
            +
                        timesteps (`List[int]`, *optional*):
         | 
| 264 | 
            +
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         | 
| 265 | 
            +
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         | 
| 266 | 
            +
                            passed will be used. Must be in descending order.
         | 
| 267 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         | 
| 268 | 
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         | 
| 269 | 
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         | 
| 270 | 
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         | 
| 271 | 
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         | 
| 272 | 
            +
                            usually at the expense of lower image quality.
         | 
| 273 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 274 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 275 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 276 | 
            +
                            less than `1`).
         | 
| 277 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 278 | 
            +
                            The number of images to generate per prompt.
         | 
| 279 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 280 | 
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         | 
| 281 | 
            +
                            to make generation deterministic.
         | 
| 282 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 283 | 
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 284 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 285 | 
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         | 
| 286 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 287 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 288 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 289 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 290 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 291 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 292 | 
            +
                            argument.
         | 
| 293 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 294 | 
            +
                            The output format of the generate image. Choose between
         | 
| 295 | 
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         | 
| 296 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 297 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
         | 
| 298 | 
            +
                            of a plain tuple.
         | 
| 299 | 
            +
                        joint_attention_kwargs (`dict`, *optional*):
         | 
| 300 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 301 | 
            +
                            `self.processor` in
         | 
| 302 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 303 | 
            +
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 304 | 
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 305 | 
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 306 | 
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 307 | 
            +
                            `callback_on_step_end_tensor_inputs`.
         | 
| 308 | 
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 309 | 
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 310 | 
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 311 | 
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         | 
| 312 | 
            +
                        max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    Examples:
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    Returns:
         | 
| 317 | 
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
         | 
| 318 | 
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
         | 
| 319 | 
            +
                        `tuple`. When returning a tuple, the first element is a list with the generated images.
         | 
| 320 | 
            +
                    """
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         | 
| 323 | 
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         | 
| 324 | 
            +
                    control_guidance_start, control_guidance_end = self.get_control_start_end(
         | 
| 325 | 
            +
                        control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end
         | 
| 326 | 
            +
                    )
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 329 | 
            +
                    self.check_inputs(
         | 
| 330 | 
            +
                        prompt,
         | 
| 331 | 
            +
                        height,
         | 
| 332 | 
            +
                        width,
         | 
| 333 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 334 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 335 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 336 | 
            +
                        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
         | 
| 337 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 338 | 
            +
                    )
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 341 | 
            +
                    self._joint_attention_kwargs = joint_attention_kwargs
         | 
| 342 | 
            +
                    self._interrupt = False
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    # 2. Define call parameters
         | 
| 345 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 346 | 
            +
                        batch_size = 1
         | 
| 347 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 348 | 
            +
                        batch_size = len(prompt)
         | 
| 349 | 
            +
                    else:
         | 
| 350 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    device = self._execution_device
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    (prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt(
         | 
| 357 | 
            +
                        prompt=prompt,
         | 
| 358 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 359 | 
            +
                        do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 360 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 361 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 362 | 
            +
                        device=device,
         | 
| 363 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 364 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 365 | 
            +
                        lora_scale=lora_scale,
         | 
| 366 | 
            +
                    )
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    if self.do_classifier_free_guidance:
         | 
| 369 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                    # 3. Prepare control image
         | 
| 372 | 
            +
                    if control_image is not None:
         | 
| 373 | 
            +
                        if isinstance(self.controlnet, BriaControlNetModel):
         | 
| 374 | 
            +
                            control_image, control_mode = self.prepare_control(
         | 
| 375 | 
            +
                                control_image=control_image,
         | 
| 376 | 
            +
                                width=width,
         | 
| 377 | 
            +
                                height=height,
         | 
| 378 | 
            +
                                batch_size=batch_size,
         | 
| 379 | 
            +
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 380 | 
            +
                                device=device,
         | 
| 381 | 
            +
                                control_mode=control_mode,
         | 
| 382 | 
            +
                            )
         | 
| 383 | 
            +
                        elif isinstance(self.controlnet, BriaMultiControlNetModel):
         | 
| 384 | 
            +
                            control_image, control_mode = self.prepare_multi_control(
         | 
| 385 | 
            +
                                control_image=control_image,
         | 
| 386 | 
            +
                                width=width,
         | 
| 387 | 
            +
                                height=height,
         | 
| 388 | 
            +
                                batch_size=batch_size,
         | 
| 389 | 
            +
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 390 | 
            +
                                device=device,
         | 
| 391 | 
            +
                                control_mode=control_mode,
         | 
| 392 | 
            +
                            )                
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    # 4. Prepare timesteps
         | 
| 395 | 
            +
                    # Sample from training sigmas
         | 
| 396 | 
            +
                    sigmas = get_original_sigmas(
         | 
| 397 | 
            +
                        num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps
         | 
| 398 | 
            +
                    )
         | 
| 399 | 
            +
                    timesteps, num_inference_steps = retrieve_timesteps(
         | 
| 400 | 
            +
                        self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
         | 
| 401 | 
            +
                    )
         | 
| 402 | 
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         | 
| 403 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    # 5. Prepare latent variables
         | 
| 406 | 
            +
                    num_channels_latents = self.transformer.config.in_channels // 4  # due to patch=2, we devide by 4
         | 
| 407 | 
            +
                    latents, latent_image_ids = self.prepare_latents(
         | 
| 408 | 
            +
                        batch_size=batch_size * num_images_per_prompt,
         | 
| 409 | 
            +
                        num_channels_latents=num_channels_latents,
         | 
| 410 | 
            +
                        height=height,
         | 
| 411 | 
            +
                        width=width,
         | 
| 412 | 
            +
                        dtype=prompt_embeds.dtype,
         | 
| 413 | 
            +
                        device=device,
         | 
| 414 | 
            +
                        generator=generator,
         | 
| 415 | 
            +
                        latents=latents,
         | 
| 416 | 
            +
                    )
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    # 6. Create tensor stating which controlnets to keep
         | 
| 419 | 
            +
                    if control_image is not None:
         | 
| 420 | 
            +
                        controlnet_keep = self.get_controlnet_keep(
         | 
| 421 | 
            +
                            timesteps=timesteps,
         | 
| 422 | 
            +
                            control_guidance_start=control_guidance_start,
         | 
| 423 | 
            +
                            control_guidance_end=control_guidance_end,
         | 
| 424 | 
            +
                        )
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    # EYAL - added the CFG loop
         | 
| 427 | 
            +
                    # 7. Denoising loop
         | 
| 428 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 429 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 430 | 
            +
                            if self.interrupt:
         | 
| 431 | 
            +
                                continue
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 434 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 435 | 
            +
                            # if type(self.scheduler) != FlowMatchEulerDiscreteScheduler:
         | 
| 436 | 
            +
                            if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
         | 
| 437 | 
            +
                                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 440 | 
            +
                            timestep = t.expand(latent_model_input.shape[0])
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                            # Handling ControlNet
         | 
| 443 | 
            +
                            if control_image is not None:
         | 
| 444 | 
            +
                                if isinstance(controlnet_keep[i], list):
         | 
| 445 | 
            +
                                    if isinstance(controlnet_conditioning_scale, list):
         | 
| 446 | 
            +
                                        cond_scale = controlnet_conditioning_scale
         | 
| 447 | 
            +
                                    else:
         | 
| 448 | 
            +
                                        cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
         | 
| 449 | 
            +
                                else:
         | 
| 450 | 
            +
                                    controlnet_cond_scale = controlnet_conditioning_scale
         | 
| 451 | 
            +
                                    if isinstance(controlnet_cond_scale, list):
         | 
| 452 | 
            +
                                        controlnet_cond_scale = controlnet_cond_scale[0]
         | 
| 453 | 
            +
                                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                                # controlnet
         | 
| 456 | 
            +
                                controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
         | 
| 457 | 
            +
                                    hidden_states=latents,
         | 
| 458 | 
            +
                                    controlnet_cond=control_image,
         | 
| 459 | 
            +
                                    controlnet_mode=control_mode,
         | 
| 460 | 
            +
                                    conditioning_scale=cond_scale,
         | 
| 461 | 
            +
                                    timestep=timestep,
         | 
| 462 | 
            +
                                    # guidance=guidance,
         | 
| 463 | 
            +
                                    # pooled_projections=pooled_prompt_embeds,
         | 
| 464 | 
            +
                                    encoder_hidden_states=prompt_embeds,
         | 
| 465 | 
            +
                                    txt_ids=text_ids,
         | 
| 466 | 
            +
                                    img_ids=latent_image_ids,
         | 
| 467 | 
            +
                                    joint_attention_kwargs=self.joint_attention_kwargs,
         | 
| 468 | 
            +
                                    return_dict=False,
         | 
| 469 | 
            +
                                )
         | 
| 470 | 
            +
                            else:
         | 
| 471 | 
            +
                                controlnet_block_samples, controlnet_single_block_samples = None, None
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                            # This is predicts "v" from flow-matching
         | 
| 474 | 
            +
                            noise_pred = self.transformer(
         | 
| 475 | 
            +
                                hidden_states=latent_model_input,
         | 
| 476 | 
            +
                                timestep=timestep,
         | 
| 477 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 478 | 
            +
                                joint_attention_kwargs=self.joint_attention_kwargs,
         | 
| 479 | 
            +
                                return_dict=False,
         | 
| 480 | 
            +
                                txt_ids=text_ids,
         | 
| 481 | 
            +
                                img_ids=latent_image_ids,
         | 
| 482 | 
            +
                                controlnet_block_samples=controlnet_block_samples,
         | 
| 483 | 
            +
                                controlnet_single_block_samples=controlnet_single_block_samples,
         | 
| 484 | 
            +
                            )[0]
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                            # perform guidance
         | 
| 487 | 
            +
                            if self.do_classifier_free_guidance:
         | 
| 488 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 489 | 
            +
                                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 492 | 
            +
                            latents_dtype = latents.dtype
         | 
| 493 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                            if latents.dtype != latents_dtype:
         | 
| 496 | 
            +
                                if torch.backends.mps.is_available():
         | 
| 497 | 
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         | 
| 498 | 
            +
                                    latents = latents.to(latents_dtype)
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                            if callback_on_step_end is not None:
         | 
| 501 | 
            +
                                callback_kwargs = {}
         | 
| 502 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 503 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 504 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 507 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 508 | 
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                            # call the callback, if provided
         | 
| 511 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 512 | 
            +
                                progress_bar.update()
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                            if XLA_AVAILABLE:
         | 
| 515 | 
            +
                                xm.mark_step()
         | 
| 516 | 
            +
             | 
| 517 | 
            +
                    if output_type == "latent":
         | 
| 518 | 
            +
                        image = latents
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                    else:
         | 
| 521 | 
            +
                        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
         | 
| 522 | 
            +
                        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
         | 
| 523 | 
            +
                        image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
         | 
| 524 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                    # Offload all models
         | 
| 527 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                    if not return_dict:
         | 
| 530 | 
            +
                        return (image,)
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                    return FluxPipelineOutput(images=image)
         | 
    	
        transformer_bria.py
    ADDED
    
    | @@ -0,0 +1,336 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Any, Dict, List, Optional, Union
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.nn as nn
         | 
| 5 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 6 | 
            +
            from diffusers.loaders import PeftAdapterMixin, FromOriginalModelMixin
         | 
| 7 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 8 | 
            +
            from diffusers.models.normalization import AdaLayerNormContinuous
         | 
| 9 | 
            +
            from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
         | 
| 10 | 
            +
            from diffusers.models.modeling_outputs import Transformer2DModelOutput
         | 
| 11 | 
            +
            from diffusers.models.embeddings import TimestepEmbedding, get_timestep_embedding
         | 
| 12 | 
            +
            from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            # Support different diffusers versions
         | 
| 15 | 
            +
            try:
         | 
| 16 | 
            +
                from diffusers.models.embeddings import FluxPosEmbed as EmbedND
         | 
| 17 | 
            +
            except:
         | 
| 18 | 
            +
                from diffusers.models.transformers.transformer_flux import rope
         | 
| 19 | 
            +
                class EmbedND(nn.Module):
         | 
| 20 | 
            +
                    def __init__(self, theta: int, axes_dim: List[int]):
         | 
| 21 | 
            +
                        super().__init__()
         | 
| 22 | 
            +
                        self.theta = theta
         | 
| 23 | 
            +
                        self.axes_dim = axes_dim
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                    def forward(self, ids: torch.Tensor) -> torch.Tensor:
         | 
| 26 | 
            +
                        n_axes = ids.shape[-1]
         | 
| 27 | 
            +
                        emb = torch.cat(
         | 
| 28 | 
            +
                            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
         | 
| 29 | 
            +
                            dim=-3,
         | 
| 30 | 
            +
                        )
         | 
| 31 | 
            +
                        return emb.unsqueeze(1)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            class Timesteps(nn.Module):
         | 
| 38 | 
            +
                def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1,max_period=10000):
         | 
| 39 | 
            +
                    super().__init__()
         | 
| 40 | 
            +
                    self.num_channels = num_channels
         | 
| 41 | 
            +
                    self.flip_sin_to_cos = flip_sin_to_cos
         | 
| 42 | 
            +
                    self.downscale_freq_shift = downscale_freq_shift
         | 
| 43 | 
            +
                    self.scale = scale
         | 
| 44 | 
            +
                    self.max_period=max_period
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                def forward(self, timesteps):
         | 
| 47 | 
            +
                    t_emb = get_timestep_embedding(
         | 
| 48 | 
            +
                        timesteps,
         | 
| 49 | 
            +
                        self.num_channels,
         | 
| 50 | 
            +
                        flip_sin_to_cos=self.flip_sin_to_cos,
         | 
| 51 | 
            +
                        downscale_freq_shift=self.downscale_freq_shift,
         | 
| 52 | 
            +
                        scale=self.scale,
         | 
| 53 | 
            +
                        max_period=self.max_period
         | 
| 54 | 
            +
                    )
         | 
| 55 | 
            +
                    return t_emb
         | 
| 56 | 
            +
                
         | 
| 57 | 
            +
            class TimestepProjEmbeddings(nn.Module):
         | 
| 58 | 
            +
                def __init__(self, embedding_dim, max_period):
         | 
| 59 | 
            +
                    super().__init__()
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0,max_period=max_period)
         | 
| 62 | 
            +
                    self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
         | 
| 63 | 
            +
                    
         | 
| 64 | 
            +
                def forward(self, timestep, dtype):
         | 
| 65 | 
            +
                    timesteps_proj = self.time_proj(timestep)
         | 
| 66 | 
            +
                    timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype))  # (N, D)
         | 
| 67 | 
            +
                    return timesteps_emb
         | 
| 68 | 
            +
                
         | 
| 69 | 
            +
            """
         | 
| 70 | 
            +
            Based on FluxPipeline with several changes:
         | 
| 71 | 
            +
            - no pooled embeddings
         | 
| 72 | 
            +
            - We use zero padding for prompts
         | 
| 73 | 
            +
            - No guidance embedding since this is not a distilled version
         | 
| 74 | 
            +
            """
         | 
| 75 | 
            +
            class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
         | 
| 76 | 
            +
                """
         | 
| 77 | 
            +
                The Transformer model introduced in Flux.
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                Parameters:
         | 
| 82 | 
            +
                    patch_size (`int`): Patch size to turn the input data into small patches.
         | 
| 83 | 
            +
                    in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
         | 
| 84 | 
            +
                    num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
         | 
| 85 | 
            +
                    num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
         | 
| 86 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
         | 
| 87 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
         | 
| 88 | 
            +
                    joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
         | 
| 89 | 
            +
                    pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
         | 
| 90 | 
            +
                    guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
         | 
| 91 | 
            +
                """
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                @register_to_config
         | 
| 96 | 
            +
                def __init__(
         | 
| 97 | 
            +
                    self,
         | 
| 98 | 
            +
                    patch_size: int = 1,
         | 
| 99 | 
            +
                    in_channels: int = 64,
         | 
| 100 | 
            +
                    num_layers: int = 19,
         | 
| 101 | 
            +
                    num_single_layers: int = 38,
         | 
| 102 | 
            +
                    attention_head_dim: int = 128,
         | 
| 103 | 
            +
                    num_attention_heads: int = 24,
         | 
| 104 | 
            +
                    joint_attention_dim: int = 4096,
         | 
| 105 | 
            +
                    pooled_projection_dim: int = None,
         | 
| 106 | 
            +
                    guidance_embeds: bool = False,
         | 
| 107 | 
            +
                    axes_dims_rope: List[int] = [16, 56, 56],
         | 
| 108 | 
            +
                    rope_theta = 10000,
         | 
| 109 | 
            +
                    max_period = 10000
         | 
| 110 | 
            +
                ):
         | 
| 111 | 
            +
                    super().__init__()
         | 
| 112 | 
            +
                    self.out_channels = in_channels
         | 
| 113 | 
            +
                    self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope)
         | 
| 116 | 
            +
                    
         | 
| 117 | 
            +
                    
         | 
| 118 | 
            +
                    self.time_embed = TimestepProjEmbeddings(
         | 
| 119 | 
            +
                        embedding_dim=self.inner_dim,max_period=max_period
         | 
| 120 | 
            +
                    )
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    # if pooled_projection_dim:
         | 
| 123 | 
            +
                    #     self.pooled_text_embed = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim=self.inner_dim, act_fn="silu")
         | 
| 124 | 
            +
                
         | 
| 125 | 
            +
                    if guidance_embeds:
         | 
| 126 | 
            +
                        self.guidance_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim)
         | 
| 127 | 
            +
                
         | 
| 128 | 
            +
                    self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
         | 
| 129 | 
            +
                    self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 132 | 
            +
                        [
         | 
| 133 | 
            +
                            FluxTransformerBlock(
         | 
| 134 | 
            +
                                dim=self.inner_dim,
         | 
| 135 | 
            +
                                num_attention_heads=self.config.num_attention_heads,
         | 
| 136 | 
            +
                                attention_head_dim=self.config.attention_head_dim,
         | 
| 137 | 
            +
                            )
         | 
| 138 | 
            +
                            for i in range(self.config.num_layers)
         | 
| 139 | 
            +
                        ]
         | 
| 140 | 
            +
                    )
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    self.single_transformer_blocks = nn.ModuleList(
         | 
| 143 | 
            +
                        [
         | 
| 144 | 
            +
                            FluxSingleTransformerBlock(
         | 
| 145 | 
            +
                                dim=self.inner_dim,
         | 
| 146 | 
            +
                                num_attention_heads=self.config.num_attention_heads,
         | 
| 147 | 
            +
                                attention_head_dim=self.config.attention_head_dim,
         | 
| 148 | 
            +
                            )
         | 
| 149 | 
            +
                            for i in range(self.config.num_single_layers)
         | 
| 150 | 
            +
                        ]
         | 
| 151 | 
            +
                    )
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
         | 
| 154 | 
            +
                    self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    self.gradient_checkpointing = False
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 159 | 
            +
                    if hasattr(module, "gradient_checkpointing"):
         | 
| 160 | 
            +
                        module.gradient_checkpointing = value
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def forward(
         | 
| 163 | 
            +
                    self,
         | 
| 164 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 165 | 
            +
                    encoder_hidden_states: torch.Tensor = None,
         | 
| 166 | 
            +
                    pooled_projections: torch.Tensor = None,
         | 
| 167 | 
            +
                    timestep: torch.LongTensor = None,
         | 
| 168 | 
            +
                    img_ids: torch.Tensor = None,
         | 
| 169 | 
            +
                    txt_ids: torch.Tensor = None,
         | 
| 170 | 
            +
                    guidance: torch.Tensor = None,
         | 
| 171 | 
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 172 | 
            +
                    return_dict: bool = True,
         | 
| 173 | 
            +
                    controlnet_block_samples = None,
         | 
| 174 | 
            +
                    controlnet_single_block_samples=None,
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
         | 
| 177 | 
            +
                    """
         | 
| 178 | 
            +
                    The [`FluxTransformer2DModel`] forward method.
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    Args:
         | 
| 181 | 
            +
                        hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
         | 
| 182 | 
            +
                            Input `hidden_states`.
         | 
| 183 | 
            +
                        encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
         | 
| 184 | 
            +
                            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
         | 
| 185 | 
            +
                        pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
         | 
| 186 | 
            +
                            from the embeddings of input conditions.
         | 
| 187 | 
            +
                        timestep ( `torch.LongTensor`):
         | 
| 188 | 
            +
                            Used to indicate denoising step.
         | 
| 189 | 
            +
                        block_controlnet_hidden_states: (`list` of `torch.Tensor`):
         | 
| 190 | 
            +
                            A list of tensors that if specified are added to the residuals of transformer blocks.
         | 
| 191 | 
            +
                        joint_attention_kwargs (`dict`, *optional*):
         | 
| 192 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 193 | 
            +
                            `self.processor` in
         | 
| 194 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 195 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 196 | 
            +
                            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
         | 
| 197 | 
            +
                            tuple.
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    Returns:
         | 
| 200 | 
            +
                        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
         | 
| 201 | 
            +
                        `tuple` where the first element is the sample tensor.
         | 
| 202 | 
            +
                    """
         | 
| 203 | 
            +
                    if joint_attention_kwargs is not None:
         | 
| 204 | 
            +
                        joint_attention_kwargs = joint_attention_kwargs.copy()
         | 
| 205 | 
            +
                        lora_scale = joint_attention_kwargs.pop("scale", 1.0)
         | 
| 206 | 
            +
                    else:
         | 
| 207 | 
            +
                        lora_scale = 1.0
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                    if USE_PEFT_BACKEND:
         | 
| 210 | 
            +
                        # weight the lora layers by setting `lora_scale` for each PEFT layer
         | 
| 211 | 
            +
                        scale_lora_layers(self, lora_scale)
         | 
| 212 | 
            +
                    else:
         | 
| 213 | 
            +
                        if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
         | 
| 214 | 
            +
                            logger.warning(
         | 
| 215 | 
            +
                                "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
         | 
| 216 | 
            +
                            )
         | 
| 217 | 
            +
                    hidden_states = self.x_embedder(hidden_states)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    timestep = timestep.to(hidden_states.dtype)
         | 
| 220 | 
            +
                    if guidance is not None:
         | 
| 221 | 
            +
                        guidance = guidance.to(hidden_states.dtype)
         | 
| 222 | 
            +
                    else:
         | 
| 223 | 
            +
                        guidance = None
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    # temb = (
         | 
| 226 | 
            +
                    #     self.time_text_embed(timestep, pooled_projections)
         | 
| 227 | 
            +
                    #     if guidance is None
         | 
| 228 | 
            +
                    #     else self.time_text_embed(timestep, guidance, pooled_projections)
         | 
| 229 | 
            +
                    # )
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    temb = self.time_embed(timestep,dtype=hidden_states.dtype)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    # if pooled_projections:
         | 
| 234 | 
            +
                    #     temb+=self.pooled_text_embed(pooled_projections)
         | 
| 235 | 
            +
                    
         | 
| 236 | 
            +
                    if guidance:
         | 
| 237 | 
            +
                        temb+=self.guidance_embed(guidance,dtype=hidden_states.dtype)
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    encoder_hidden_states = self.context_embedder(encoder_hidden_states)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    if len(txt_ids.shape)==2:
         | 
| 242 | 
            +
                        ids = torch.cat((txt_ids, img_ids), dim=0)
         | 
| 243 | 
            +
                    else:
         | 
| 244 | 
            +
                        ids = torch.cat((txt_ids, img_ids), dim=1)
         | 
| 245 | 
            +
                    image_rotary_emb = self.pos_embed(ids)
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    for index_block, block in enumerate(self.transformer_blocks):
         | 
| 248 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 251 | 
            +
                                def custom_forward(*inputs):
         | 
| 252 | 
            +
                                    if return_dict is not None:
         | 
| 253 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 254 | 
            +
                                    else:
         | 
| 255 | 
            +
                                        return module(*inputs)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                                return custom_forward
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         | 
| 260 | 
            +
                            encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 261 | 
            +
                                create_custom_forward(block),
         | 
| 262 | 
            +
                                hidden_states,
         | 
| 263 | 
            +
                                encoder_hidden_states,
         | 
| 264 | 
            +
                                temb,
         | 
| 265 | 
            +
                                image_rotary_emb,
         | 
| 266 | 
            +
                                **ckpt_kwargs,
         | 
| 267 | 
            +
                            )
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                        else:
         | 
| 270 | 
            +
                            encoder_hidden_states, hidden_states = block(
         | 
| 271 | 
            +
                                hidden_states=hidden_states,
         | 
| 272 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 273 | 
            +
                                temb=temb,
         | 
| 274 | 
            +
                                image_rotary_emb=image_rotary_emb,
         | 
| 275 | 
            +
                            )
         | 
| 276 | 
            +
                        
         | 
| 277 | 
            +
                        # controlnet residual
         | 
| 278 | 
            +
                        if controlnet_block_samples is not None:
         | 
| 279 | 
            +
                            interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
         | 
| 280 | 
            +
                            interval_control = int(np.ceil(interval_control))
         | 
| 281 | 
            +
                            hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
         | 
| 282 | 
            +
             | 
| 283 | 
            +
             | 
| 284 | 
            +
                    hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    for index_block, block in enumerate(self.single_transformer_blocks):
         | 
| 287 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 290 | 
            +
                                def custom_forward(*inputs):
         | 
| 291 | 
            +
                                    if return_dict is not None:
         | 
| 292 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 293 | 
            +
                                    else:
         | 
| 294 | 
            +
                                        return module(*inputs)
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                                return custom_forward
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         | 
| 299 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 300 | 
            +
                                create_custom_forward(block),
         | 
| 301 | 
            +
                                hidden_states,
         | 
| 302 | 
            +
                                temb,
         | 
| 303 | 
            +
                                image_rotary_emb,
         | 
| 304 | 
            +
                                **ckpt_kwargs,
         | 
| 305 | 
            +
                            )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                        else:
         | 
| 308 | 
            +
                            hidden_states = block(
         | 
| 309 | 
            +
                                hidden_states=hidden_states,
         | 
| 310 | 
            +
                                temb=temb,
         | 
| 311 | 
            +
                                image_rotary_emb=image_rotary_emb,
         | 
| 312 | 
            +
                            )
         | 
| 313 | 
            +
                        
         | 
| 314 | 
            +
                        # controlnet residual
         | 
| 315 | 
            +
                        if controlnet_single_block_samples is not None:
         | 
| 316 | 
            +
                            interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
         | 
| 317 | 
            +
                            interval_control = int(np.ceil(interval_control))
         | 
| 318 | 
            +
                            hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
         | 
| 319 | 
            +
                                hidden_states[:, encoder_hidden_states.shape[1] :, ...]
         | 
| 320 | 
            +
                                + controlnet_single_block_samples[index_block // interval_control]
         | 
| 321 | 
            +
                            )
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    hidden_states = self.norm_out(hidden_states, temb)
         | 
| 326 | 
            +
                    output = self.proj_out(hidden_states)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    if USE_PEFT_BACKEND:
         | 
| 329 | 
            +
                        # remove `lora_scale` from each PEFT layer
         | 
| 330 | 
            +
                        unscale_lora_layers(self, lora_scale)
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    if not return_dict:
         | 
| 333 | 
            +
                        return (output,)
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    return Transformer2DModelOutput(sample=output)
         | 
| 336 | 
            +
             | 

