Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,37 +24,40 @@ def load_model():
|
|
24 |
|
25 |
# Load the processor and model using the correct identifier
|
26 |
model_id = "google/paligemma2-28b-pt-448"
|
27 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id,
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
30 |
-
model_id, torch_dtype=torch.bfloat16,
|
31 |
).to(device).eval()
|
32 |
|
33 |
return processor, model
|
34 |
|
35 |
|
36 |
-
@spaces.GPU #
|
37 |
def process_image_and_text(image_pil, text_input):
|
38 |
"""Extract text from image using PaliGemma2."""
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
image = load_image(image_pil)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
if __name__ == "__main__":
|
|
|
24 |
|
25 |
# Load the processor and model using the correct identifier
|
26 |
model_id = "google/paligemma2-28b-pt-448"
|
27 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id, token=token)
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
30 |
+
model_id, torch_dtype=torch.bfloat16, token=token
|
31 |
).to(device).eval()
|
32 |
|
33 |
return processor, model
|
34 |
|
35 |
|
36 |
+
@spaces.GPU(duration=120) # Increased timeout to 120 seconds
|
37 |
def process_image_and_text(image_pil, text_input):
|
38 |
"""Extract text from image using PaliGemma2."""
|
39 |
+
try:
|
40 |
+
processor, model = load_model()
|
41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
|
43 |
+
# Load the image using load_image
|
44 |
+
image = load_image(image_pil)
|
|
|
45 |
|
46 |
+
# Use the provided text input
|
47 |
+
model_inputs = processor(text=text_input, images=image, return_tensors="pt").to(
|
48 |
+
device, dtype=torch.bfloat16
|
49 |
+
)
|
50 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
51 |
|
52 |
+
with torch.inference_mode():
|
53 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
54 |
+
generation = generation[0][input_len:]
|
55 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
56 |
|
57 |
+
return decoded
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error during GPU task: {e}")
|
60 |
+
raise gr.Error(f"GPU task failed: {e}")
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|