Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,18 +23,18 @@ def load_model():
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# Load the processor and model using the correct identifier
|
| 26 |
-
model_id = "google/paligemma2-
|
| 27 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id,
|
| 28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 30 |
-
model_id, torch_dtype=torch.bfloat16,
|
| 31 |
).to(device).eval()
|
| 32 |
|
| 33 |
return processor, model
|
| 34 |
|
| 35 |
|
| 36 |
@spaces.GPU(duration=120) # Increased timeout to 120 seconds
|
| 37 |
-
def process_image_and_text(image_pil, text_input):
|
| 38 |
"""Extract text from image using PaliGemma2."""
|
| 39 |
try:
|
| 40 |
processor, model = load_model()
|
|
@@ -43,6 +43,9 @@ def process_image_and_text(image_pil, text_input):
|
|
| 43 |
# Load the image using load_image
|
| 44 |
image = load_image(image_pil)
|
| 45 |
|
|
|
|
|
|
|
|
|
|
| 46 |
# Use the provided text input
|
| 47 |
model_inputs = processor(text=text_input, images=image, return_tensors="pt").to(
|
| 48 |
device, dtype=torch.bfloat16
|
|
@@ -50,7 +53,7 @@ def process_image_and_text(image_pil, text_input):
|
|
| 50 |
input_len = model_inputs["input_ids"].shape[-1]
|
| 51 |
|
| 52 |
with torch.inference_mode():
|
| 53 |
-
generation = model.generate(**model_inputs, max_new_tokens=
|
| 54 |
generation = generation[0][input_len:]
|
| 55 |
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 56 |
|
|
@@ -66,6 +69,7 @@ if __name__ == "__main__":
|
|
| 66 |
inputs=[
|
| 67 |
gr.Image(type="pil", label="Upload an image"),
|
| 68 |
gr.Textbox(label="Enter Text Prompt"),
|
|
|
|
| 69 |
],
|
| 70 |
outputs=gr.Textbox(label="Generated Text"),
|
| 71 |
title="PaliGemma2 Image and Text to Text",
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# Load the processor and model using the correct identifier
|
| 26 |
+
model_id = "google/paligemma2-28b-pt-896"
|
| 27 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id, use_auth_token=token)
|
| 28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 30 |
+
model_id, torch_dtype=torch.bfloat16, use_auth_token=token
|
| 31 |
).to(device).eval()
|
| 32 |
|
| 33 |
return processor, model
|
| 34 |
|
| 35 |
|
| 36 |
@spaces.GPU(duration=120) # Increased timeout to 120 seconds
|
| 37 |
+
def process_image_and_text(image_pil, text_input, num_beams):
|
| 38 |
"""Extract text from image using PaliGemma2."""
|
| 39 |
try:
|
| 40 |
processor, model = load_model()
|
|
|
|
| 43 |
# Load the image using load_image
|
| 44 |
image = load_image(image_pil)
|
| 45 |
|
| 46 |
+
# Add <image> token to the beginning of the text prompt
|
| 47 |
+
text_input = "<image> " + text_input
|
| 48 |
+
|
| 49 |
# Use the provided text input
|
| 50 |
model_inputs = processor(text=text_input, images=image, return_tensors="pt").to(
|
| 51 |
device, dtype=torch.bfloat16
|
|
|
|
| 53 |
input_len = model_inputs["input_ids"].shape[-1]
|
| 54 |
|
| 55 |
with torch.inference_mode():
|
| 56 |
+
generation = model.generate(**model_inputs, max_new_tokens=200, do_sample=False, num_beams=num_beams)
|
| 57 |
generation = generation[0][input_len:]
|
| 58 |
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 59 |
|
|
|
|
| 69 |
inputs=[
|
| 70 |
gr.Image(type="pil", label="Upload an image"),
|
| 71 |
gr.Textbox(label="Enter Text Prompt"),
|
| 72 |
+
gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of Beams"),
|
| 73 |
],
|
| 74 |
outputs=gr.Textbox(label="Generated Text"),
|
| 75 |
title="PaliGemma2 Image and Text to Text",
|