Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ def load_model():
|
|
23 |
)
|
24 |
|
25 |
# Load the processor and model using the correct identifier
|
26 |
-
model_id = "google/paligemma2-
|
27 |
processor = PaliGemmaProcessor.from_pretrained(model_id, use_auth_token=token)
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
@@ -40,11 +40,8 @@ def process_image_and_text(image_pil, text_input):
|
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
|
42 |
# Load the image using load_image
|
43 |
-
#
|
44 |
-
|
45 |
-
image_pil.save(buffered, format="JPEG")
|
46 |
-
image_bytes = buffered.getvalue()
|
47 |
-
image = load_image(image_bytes)
|
48 |
|
49 |
# Use the provided text input
|
50 |
model_inputs = processor(text=text_input, images=image, return_tensors="pt").to(
|
|
|
23 |
)
|
24 |
|
25 |
# Load the processor and model using the correct identifier
|
26 |
+
model_id = "google/paligemma2-28b-pt-896"
|
27 |
processor = PaliGemmaProcessor.from_pretrained(model_id, use_auth_token=token)
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
|
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
|
42 |
# Load the image using load_image
|
43 |
+
# We can pass the PIL image directly to load_image
|
44 |
+
image = load_image(image_pil)
|
|
|
|
|
|
|
45 |
|
46 |
# Use the provided text input
|
47 |
model_inputs = processor(text=text_input, images=image, return_tensors="pt").to(
|