File size: 9,322 Bytes
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import argparse
import numpy as np
from helper import *
from config.GlobalVariables import *
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
import convenience
import gradio as gr

#@title Demo
device = 'cpu'
num_samples = 10

net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)

if not torch.cuda.is_available():
    try: # retrained model also contains loss in dict 
        net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
    except:
        net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device)))
    

dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')


writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
all_loaded_data = []
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
avail_char_list = avail_char.split(" ")
for writer_id in [120, 80]:
    loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
    all_loaded_data.append(loaded_data)

default_loaded_data = all_loaded_data[-1]
# for writer interpolation
def interpolate_writers(target_word, weight):
    image = convenience.sample_blended_writers([1 - weight, weight], target_word, net, all_loaded_data, device).convert("RGB")
    return image

def choose_blend_writers(writer1, writer2):
    id1, id2 = int(writer1.split(" ")[1]), int(writer1.split(" ")[1])
    all_loaded_data.clear()
    for writer_id in [id1, id2]:
        loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
        all_loaded_data.append(loaded_data)

    return gr.Slider.update(label=f"{writer1} vs. {writer2}")
'''
def choose_writer(writ, c1, c2, c3, c4, val):
    all_loaded_data.clear()
    w = int(writ.split(" ")[1])
    loaded_data = dl.next_batch(TYPE='TRAIN', uid=w, tids=list(range(num_samples)))
    all_loaded_data.append(loaded_data)
    return char_grid(c1, c2, c3, c4, val)
'''
# for character grrid
def choose_grid_chars(c1, c2, c3, c4):
      return gr.Button.update(value=f"Blend {c1}, {c2}, {c3}, and {c4}!")

def char_grid(c1, c2, c3, c4):
    image = convenience.sample_character_grid([c1, c2, c3, c4], 5, net, [default_loaded_data], device).convert("RGB")
    return image

# for character blend
def interpolate_chars(c1, c2, weight):
    image = convenience.sample_blended_chars([1 - weight, weight], [c1, c2], net, [default_loaded_data], device).convert("RGB")
    return image

def choose_blend_chars(c1, c2):
   return gr.Slider.update(label=f"'{c1}' vs. '{c2}'")

# for MDN
def mdn_sample(word, maxs, maxr):
    image = convenience.mdn_single_sample(word, maxs, maxr, net, [default_loaded_data], device).convert("RGB")
    return image
"""
def char_vid(word):
    #make word list
    convenience.char_interpolation_video(word_list, 10, net, [default_loaded_data], device).convert('RGB')
    vid_path = f"/content/drive/MyDrive/Colab Notebooks/Spring22/decoupled-style-descriptors-eb/results/abcdefg_video.mov"
    return gr.Video.update(value=vid_path)
"""
    
with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.TabItem("Blend Writers"):
          target_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
          with gr.Row():
              left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
              right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
              with gr.Column():
                  writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
              with gr.Column():
                  writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
          with gr.Row():
              writer_slider = gr.Slider(0, 1, value=0.3, label="Style 120 vs. Style 80")
          with gr.Row():
              writer_submit = gr.Button("Submit")
          with gr.Row():
              writer_default_image = convenience.sample_blended_writers([0.7, 0.3], "hello world", net, all_loaded_data, device).convert("RGB")
              writer_output = gr.Image(writer_default_image)
          
          writer_submit.click(fn=interpolate_writers, inputs=[target_word, writer_slider], outputs=[writer_output])
          writer_slider.change(fn=interpolate_writers, inputs=[target_word, writer_slider], outputs=[writer_output])
          target_word.submit(fn=interpolate_writers, inputs=[target_word, writer_slider], outputs=[writer_output])

          writer1.change(fn=choose_blend_writers, inputs=[writer1, writer2], outputs=[writer_slider])
          writer2.change(fn=choose_blend_writers, inputs=[writer1, writer2], outputs=[writer_slider])
    

        with gr.TabItem("Blend Characters"):
            with gr.Row():
                with gr.Column():
                    char1 = gr.Dropdown(choices=avail_char_list, value="y", label="Character 1")
                with gr.Column():
                    char2 = gr.Dropdown(choices=avail_char_list, value="s", label="Character 2")
            with gr.Row():
               char_slider = gr.Slider(0, 1, value=0.3, label="'y' vs. 's'")
            with gr.Row():
               char_default_image = convenience.sample_blended_chars([0.7, 0.3], ["y", "s"], net, [default_loaded_data], device).convert("RGB")
               char_output = gr.Image(char_default_image)
            
            char_slider.change(fn=interpolate_chars, inputs=[char1, char2, char_slider], outputs=[char_output])

            char1.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
            char2.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
        
        """
        with gr.TabItem("Character Grid"): #slow
          with gr.Row():
              with gr.Column():
                  char1 = gr.Dropdown(choices=avail_char_list, value="y", label="Character 1")
              with gr.Column():
                  char2 = gr.Dropdown(choices=avail_char_list, value="s", label="Character 2")
              with gr.Column():
                  char3 = gr.Dropdown(choices=avail_char_list, value="u", label="Character 3")
              with gr.Column():
                  char4 = gr.Dropdown(choices=avail_char_list, value="n", label="Character 4")
          with gr.Row(): 
              submit_button = gr.Button(value="Blend y, s, u, and n!")
          '''
          with gr.Row():
              radio_options2 = ["Writer " + str(n) for n in writer_options]
              writer = gr.Radio(radio_options2, value="Writer 80", label="Style for Writer")
              writer.change(fn=choose_writer, inputs=[writer, char1, char2, char3, char4, slider2], outputs=[output])
          '''
          #slider2 = gr.Slider(2, 20, value=10, label="Grid Size", step=1)

          default_image = convenience.sample_character_grid(['y', 's', 'u', 'n'], 10, net, [default_loaded_data], device).convert("RGB")
          output = gr.Image(default_image)
          
          char1.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
          char2.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
          char3.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
          char4.change(fn=choose_grid_chars, inputs=[char1, char2, char3, char4], outputs=[submit_button])
          
          
          #slider2.change(fn=char_grid, inputs=[char1, char2, char3, char4, slider2], outputs=[output])
          submit_button.click(fn=char_grid, inputs=[char1, char2, char3, char4], outputs=[output])
        """
        
        with gr.TabItem("Add Randomness"):
          mdn_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
          '''
          with gr.Row():
              radio_options3 = ["Writer " + str(n) for n in writer_options]
              writer = gr.Radio(radio_options3, value="Writer 80", label="Style for Writer")
              writer.change(fn=new_writer_mdn, inputs=[writer, slider3, slider4], outputs=[output])
          '''
          with gr.Row():
            with gr.Column():
              max_rand = gr.Slider(0, 1, value=1, label="Maximum Randomness")
            with gr.Column():
              scale_rand = gr.Slider(0, 3, value=0.5, label="Scale of Randomness")
          with gr.Row():
              sample_button = gr.Button(value="Resample!")
          with gr.Row():
              default_im = convenience.mdn_single_sample("hello world", 0.5, 1, net, [default_loaded_data], device).convert('RGB')
              mdn_output = gr.Image(default_im)

          max_rand.change(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])
          scale_rand.change(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])        
          sample_button.click(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])
          mdn_word.submit(fn=mdn_sample, inputs=[mdn_word, scale_rand, max_rand], outputs=[mdn_output])

demo.launch()