Spaces:
Build error
Build error
File size: 8,980 Bytes
b65c5e3 3e4d521 b65c5e3 3d3e7ab b65c5e3 f6d8e1b 3d3e7ab f6d8e1b 3d3e7ab f6d8e1b 3d3e7ab f6d8e1b 3d3e7ab f6d8e1b 3d3e7ab f6d8e1b 3e4d521 b65c5e3 f6d8e1b b65c5e3 3d3e7ab 3e4d521 3d3e7ab b65c5e3 3d3e7ab f6d8e1b 3d3e7ab f6d8e1b b65c5e3 4808304 b65c5e3 4808304 b65c5e3 f6d8e1b b65c5e3 f6d8e1b b65c5e3 4808304 b65c5e3 4808304 b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import torch
import argparse
import numpy as np
from helper import *
from config.GlobalVariables import *
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
import convenience
import gradio as gr
#@title Demo
device = 'cpu'
num_samples = 10
net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
if not torch.cuda.is_available():
net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
all_loaded_data = []
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
avail_char_list = avail_char.split(" ")
for writer_id in [120, 80]:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data.append(loaded_data)
default_loaded_data = all_loaded_data[-1]
mdn_words = []
mdn_mean_Ws = []
all_word_mdn_Ws = []
all_word_mdn_Cs = []
# data for writer interpolation
writer_words = []
writer_mean_Ws = []
all_word_writer_Ws = []
all_word_writer_Cs = []
weight = 0.7
def update_target_word(target_word):
writer_words.clear()
for word in target_word.split(" "):
writer_words.append(word)
writer_mean_Ws.clear()
for loaded_data in all_loaded_data:
mean_global_W = convenience.get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W)
all_word_writer_Ws.clear()
all_word_writer_Cs.clear()
for word in writer_words:
all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
all_word_writer_Ws.append(all_writer_Ws)
all_word_writer_Cs.append(all_writer_Cs)
return update_writer_slider(weight)
# for writer interpolation
def update_writer_slider(val):
global weight
weight = val
net.clamp_mdn = 0
im = convenience.draw_words(writer_words, all_word_writer_Ws, all_word_writer_Cs, [1 - weight, weight], net)
return im.convert("RGB")
def update_chosen_writers(writer1, writer2):
net.clamp_mdn = 0
id1, id2 = int(writer1.split(" ")[1]), int(writer2.split(" ")[1])
all_loaded_data.clear()
for writer_id in [id1, id2]:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data.append(loaded_data)
return gr.Slider.update(label=f"{writer1} vs. {writer2}"), update_writer_slider(weight)
# for character blend
def interpolate_chars(c1, c2, weight):
"""Generates an image of handwritten text based on target_sentence"""
net.clamp_mdn = 0
letters = [c1, c2]
character_weights = [1 - weight, weight]
M = len(letters)
mean_global_W = convenience.get_mean_global_W(net, all_loaded_data[0], device)
all_Cs = torch.zeros(1, M, convenience.L, convenience.L)
for i in range(M): # get corners of grid
W_vector, char_matrix = convenience.get_DSD(net, letters[i], [mean_global_W], [default_loaded_data], device)
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, convenience.L)
all_W_c = convenience.get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = convenience.get_commands(net, letters[0], all_W_c)
width = 60
x_offset = 325
im = Image.fromarray(np.zeros([160, 750]))
dr = ImageDraw.Draw(im)
for [x, y, t] in all_commands:
if t == 0:
dr.line((
px + width/2 + x_offset,
py - width/2, # letters are shifted down for some reason
x + width/2 + + x_offset,
y - width/2), 255, 1)
px, py = x, y
return im.convert("RGB")
def choose_blend_chars(c1, c2):
return gr.Slider.update(label=f"'{c1}' vs. '{c2}'")
# for MDN
def update_mdn_word(target_word):
mdn_words.clear()
for word in target_word.split(" "):
mdn_words.append(word)
mdn_mean_Ws.clear()
mean_global_W = convenience.get_mean_global_W(net, default_loaded_data, device)
mdn_mean_Ws.append(mean_global_W)
all_word_mdn_Ws.clear()
all_word_mdn_Cs.clear()
for word in mdn_words:
all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, mdn_mean_Ws, [default_loaded_data], device)
all_word_mdn_Ws.append(all_writer_Ws)
all_word_mdn_Cs.append(all_writer_Cs)
return sample_mdn(net.scale_sd, net.clamp_mdn)
def sample_mdn(maxs, maxr):
net.clamp_mdn = maxr
net.scale_sd = maxs
im = convenience.draw_words(mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, [1], net)
return im.convert("RGB")
update_target_word("hello world")
update_mdn_word("hello world")
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Blend Writers"):
target_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
with gr.Row():
left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
with gr.Column():
writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
with gr.Column():
writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
with gr.Row():
writer_slider = gr.Slider(0, 1, value=0.7, label="Style 120 vs. Style 80")
with gr.Row():
writer_submit = gr.Button("Submit")
with gr.Row():
writer_default_image = convenience.sample_blended_writers([0.3, 0.7], "hello world", net, all_loaded_data, device).convert("RGB")
writer_output = gr.Image(writer_default_image)
writer_submit.click(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output])
writer_slider.change(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output])
target_word.submit(fn=update_target_word, inputs=[target_word], outputs=[writer_output])
writer1.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output])
writer2.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output])
with gr.TabItem("Blend Characters"):
with gr.Row():
with gr.Column():
char1 = gr.Dropdown(choices=avail_char_list, value="y", label="Character 1")
with gr.Column():
char2 = gr.Dropdown(choices=avail_char_list, value="s", label="Character 2")
with gr.Row():
char_slider = gr.Slider(0, 1, value=0.7, label="'y' vs. 's'")
with gr.Row():
char_default_image = convenience.sample_blended_chars([0.3, 0.7], ["y", "s"], net, [default_loaded_data], device).convert("RGB")
char_output = gr.Image(char_default_image)
char_slider.change(fn=interpolate_chars, inputs=[char1, char2, char_slider], outputs=[char_output])
char1.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
char2.change(fn=choose_blend_chars, inputs=[char1, char2], outputs=[char_slider])
with gr.TabItem("Add Randomness"):
mdn_word = gr.Textbox(label="Target Word", value="hello world", max_lines=1)
'''
with gr.Row():
radio_options3 = ["Writer " + str(n) for n in writer_options]
writer = gr.Radio(radio_options3, value="Writer 80", label="Style for Writer")
writer.change(fn=new_writer_mdn, inputs=[writer, slider3, slider4], outputs=[output])
'''
with gr.Row():
with gr.Column():
max_rand = gr.Slider(0, 1, value=1, label="Maximum Randomness")
with gr.Column():
scale_rand = gr.Slider(0, 3, value=0.5, label="Scale of Randomness")
with gr.Row():
mdn_sample_button = gr.Button(value="Resample!")
with gr.Row():
default_im = convenience.mdn_single_sample("hello world", 0.5, 1, net, [default_loaded_data], device).convert('RGB')
mdn_output = gr.Image(default_im)
max_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output])
scale_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output])
mdn_sample_button.click(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output])
mdn_word.submit(fn=update_mdn_word, inputs=[mdn_word], outputs=[mdn_output])
demo.launch()
|