#!/usr/bin/env python # -*- coding: utf-8 -*- # flake8: noqa E501 from dataclasses import dataclass, field, make_dataclass from enum import Enum from functools import partial import pandas as pd from src.about import Tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if not k.startswith("__") and not k.endswith("__")] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str = field(default='str') displayed_by_default: bool = field(default=False) hidden: bool = field(default=False) never_hidden: bool = field(default=False) # Helper function to create a ColumnContent with default_factory def create_column_content(name, type='str', displayed_by_default=False, hidden=False, never_hidden=False): return field(default_factory=lambda: ColumnContent(name, type, displayed_by_default, hidden, never_hidden)) auto_eval_column_dict = [ ("model_type_symbol", ColumnContent, create_column_content("", "str", True, never_hidden=True)), ("model", ColumnContent, create_column_content("Model", "markdown", True, never_hidden=True)), ("average", ColumnContent, create_column_content("Average", "number", True)), ] # Add task-specific columns for task in Tasks: auto_eval_column_dict.append((task.name, ColumnContent, create_column_content(task.value.col_name, "number", True))) # Add model information columns model_info_columns = [ ("model_type", "Type", "str", False), ("architecture", "Architecture", "str", False), ("weight_type", "Weight type", "str", False, True), ("precision", "Precision", "str", False), ("license", "License", "str", False), ("params", "Parameters", "number", False), ("likes", "Likes", "number", False), ("still_on_hub", "Available on HuggingFace", "bool", False), ("revision", "Revision", "str", False, False), ] for col_name, display_name, col_type, displayed_by_default, *args in model_info_columns: hidden = args[0] if args else False auto_eval_column_dict.append((col_name, ColumnContent, create_column_content(display_name, col_type, displayed_by_default, hidden))) # Create the AutoEvalColumn dataclass AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)() # For the requests columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) # private = ColumnContent("private", "bool", True) # precision = ColumnContent("precision", "str", True) # weight_type = ColumnContent("weight_type", "str", "Original") # status = ColumnContent("status", "str", True) # All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="💎") FT = ModelDetails(name="finetuned", symbol="💍") BrainDAO = ModelDetails(name="braindao", symbol="🧠") Unknown = ModelDetails(name="", symbol="❓") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "finetuned" in type or "💍" in type: return ModelType.FT if "pretrained" in type or "💎" in type: return ModelType.PT if "braindao" in type or "🧠" in type: return ModelType.IFT return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") float32 = ModelDetails("float32") bfloat32 = ModelDetails("bfloat32") Unknown = ModelDetails("Unknown") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 if precision in ["torch.float32", "float32"]: return Precision.float32 if precision in ["torch.bfloat32", "bfloat32"]: return Precision.bfloat32 return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks]