brunneis's picture
Refactor leaderboard
6bf4f4e unverified
raw
history blame
4.68 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# flake8: noqa E501
from dataclasses import dataclass, field, make_dataclass
from enum import Enum
from functools import partial
import pandas as pd
from src.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if not k.startswith("__") and not k.endswith("__")]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str = field(default='str')
displayed_by_default: bool = field(default=False)
hidden: bool = field(default=False)
never_hidden: bool = field(default=False)
# Helper function to create a ColumnContent with default_factory
def create_column_content(name, type='str', displayed_by_default=False, hidden=False, never_hidden=False):
return field(default_factory=lambda: ColumnContent(name, type, displayed_by_default, hidden, never_hidden))
auto_eval_column_dict = [
("model_type_symbol", ColumnContent, create_column_content("", "str", True, never_hidden=True)),
("model", ColumnContent, create_column_content("Model", "markdown", True, never_hidden=True)),
("average", ColumnContent, create_column_content("Average", "number", True)),
]
# Add task-specific columns
for task in Tasks:
auto_eval_column_dict.append((task.name, ColumnContent, create_column_content(task.value.col_name, "number", True)))
# Add model information columns
model_info_columns = [
("model_type", "Type", "str", False),
("architecture", "Architecture", "str", False),
("weight_type", "Weight type", "str", False, True),
("precision", "Precision", "str", False),
("license", "License", "str", False),
("params", "Parameters", "number", False),
("likes", "Likes", "number", False),
("still_on_hub", "Available on HuggingFace", "bool", False),
("revision", "Revision", "str", False, False),
]
for col_name, display_name, col_type, displayed_by_default, *args in model_info_columns:
hidden = args[0] if args else False
auto_eval_column_dict.append((col_name, ColumnContent, create_column_content(display_name, col_type, displayed_by_default, hidden)))
# Create the AutoEvalColumn dataclass
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)()
# For the requests columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
# private = ColumnContent("private", "bool", True)
# precision = ColumnContent("precision", "str", True)
# weight_type = ColumnContent("weight_type", "str", "Original")
# status = ColumnContent("status", "str", True)
# All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="πŸ’Ž")
FT = ModelDetails(name="finetuned", symbol="πŸ’")
BrainDAO = ModelDetails(name="braindao", symbol="🧠")
Unknown = ModelDetails(name="", symbol="❓")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "finetuned" in type or "πŸ’" in type:
return ModelType.FT
if "pretrained" in type or "πŸ’Ž" in type:
return ModelType.PT
if "braindao" in type or "🧠" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
bfloat32 = ModelDetails("bfloat32")
Unknown = ModelDetails("Unknown")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["torch.float32", "float32"]:
return Precision.float32
if precision in ["torch.bfloat32", "bfloat32"]:
return Precision.bfloat32
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]