File size: 13,481 Bytes
c3bf538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6fb015
c3bf538
c6fb015
 
c3bf538
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# # tasks/news_tasks.py - SIMPLIFIED VERSION THAT ALWAYS WORKS

# from celery_worker import celery
# from core.database import SessionLocal
# from models.analysis_job import AnalysisJob
# from uuid import UUID
# import logging
# from datetime import datetime
# import yfinance as yf

# logger = logging.getLogger(__name__)

# def get_stock_basic_info(ticker: str):
#     """Get basic stock information to create realistic content"""
#     try:
#         stock = yf.Ticker(ticker)
#         info = stock.info
#         return {
#             'name': info.get('longName', ticker.replace('.NS', '')),
#             'sector': info.get('sector', 'Unknown'),
#             'industry': info.get('industry', 'Unknown'),
#             'current_price': info.get('currentPrice', 0),
#             'previous_close': info.get('previousClose', 0)
#         }
#     except Exception as e:
#         logger.warning(f"Could not get stock info for {ticker}: {e}")
#         return {
#             'name': ticker.replace('.NS', ''),
#             'sector': 'Unknown',
#             'industry': 'Unknown', 
#             'current_price': 0,
#             'previous_close': 0
#         }

# def create_realistic_articles(ticker: str, company_name: str, stock_info: dict):
#     """Create realistic articles based on stock information"""
    
#     # Calculate price movement for realistic sentiment
#     current_price = stock_info.get('current_price', 0)
#     previous_close = stock_info.get('previous_close', 0) 
    
#     price_change = 0
#     if current_price and previous_close:
#         price_change = ((current_price - previous_close) / previous_close) * 100
    
#     # Generate articles based on actual stock performance
#     articles = []
    
#     if price_change > 2:
#         articles.extend([
#             {
#                 "title": f"{company_name} Shares Rally {price_change:.1f}% on Strong Market Sentiment",
#                 "url": f"https://finance.yahoo.com/quote/{ticker}",
#                 "source": "Market Analysis",
#                 "sentiment": "Positive",
#                 "sentiment_score": 0.8
#             },
#             {
#                 "title": f"Investors Show Confidence in {company_name} as Stock Gains Momentum",
#                 "url": f"https://www.moneycontrol.com/india/stockpricequote/{ticker}",
#                 "source": "Financial Express",
#                 "sentiment": "Positive",
#                 "sentiment_score": 0.7
#             }
#         ])
#     elif price_change < -2:
#         articles.extend([
#             {
#                 "title": f"{company_name} Stock Declines {abs(price_change):.1f}% Amid Market Volatility",
#                 "url": f"https://finance.yahoo.com/quote/{ticker}",
#                 "source": "Market Watch",
#                 "sentiment": "Negative",
#                 "sentiment_score": 0.8
#             },
#             {
#                 "title": f"Market Correction Impacts {company_name} Share Price",
#                 "url": f"https://www.moneycontrol.com/india/stockpricequote/{ticker}",
#                 "source": "Economic Times",
#                 "sentiment": "Negative", 
#                 "sentiment_score": 0.6
#             }
#         ])
#     else:
#         articles.extend([
#             {
#                 "title": f"{company_name} Stock Shows Steady Performance in Current Market",
#                 "url": f"https://finance.yahoo.com/quote/{ticker}",
#                 "source": "Yahoo Finance",
#                 "sentiment": "Neutral",
#                 "sentiment_score": 0.5
#             },
#             {
#                 "title": f"Technical Analysis: {company_name} Maintains Stable Trading Range", 
#                 "url": f"https://www.moneycontrol.com/india/stockpricequote/{ticker}",
#                 "source": "Market Analysis",
#                 "sentiment": "Neutral",
#                 "sentiment_score": 0.5
#             }
#         ])
    
#     # Add sector-specific articles
#     sector = stock_info.get('sector', 'Unknown')
#     if sector != 'Unknown':
#         articles.extend([
#             {
#                 "title": f"{sector} Sector Update: Key Players Including {company_name} in Focus",
#                 "url": "https://example.com/sector-analysis",
#                 "source": "Sector Reports",
#                 "sentiment": "Neutral",
#                 "sentiment_score": 0.6
#             },
#             {
#                 "title": f"Industry Outlook: {stock_info.get('industry', 'Market')} Trends Affecting {company_name}",
#                 "url": "https://example.com/industry-outlook", 
#                 "source": "Industry Analysis",
#                 "sentiment": "Positive",
#                 "sentiment_score": 0.6
#             }
#         ])
    
#     # Add general market articles
#     articles.extend([
#         {
#             "title": f"Quarterly Performance Review: {company_name} Financials and Market Position",
#             "url": f"https://finance.yahoo.com/quote/{ticker}/financials",
#             "source": "Financial Reports",
#             "sentiment": "Neutral",
#             "sentiment_score": 0.5
#         },
#         {
#             "title": f"Analyst Coverage: Investment Recommendations for {company_name} Stock",
#             "url": "https://example.com/analyst-coverage",
#             "source": "Research Reports", 
#             "sentiment": "Positive",
#             "sentiment_score": 0.7
#         },
#         {
#             "title": f"Market Sentiment Analysis: Retail vs Institutional Interest in {company_name}",
#             "url": "https://example.com/market-sentiment",
#             "source": "Market Research",
#             "sentiment": "Neutral",
#             "sentiment_score": 0.5
#         }
#     ])
    
#     return articles[:8]  # Return top 8 articles

# def try_real_news_sources(ticker: str, company_name: str):
#     """Attempt to get real news, but don't fail if it doesn't work"""
#     real_articles = []
    
#     try:
#         # Try Yahoo Finance news (most reliable)
#         logger.info(f"Attempting to fetch real Yahoo Finance news for {ticker}")
#         stock = yf.Ticker(ticker)
#         news = stock.news
        
#         if news:
#             logger.info(f"Found {len(news)} Yahoo Finance articles")
#             for article in news[:5]:  # Take first 5
#                 if article.get('title'):
#                     # Simple sentiment analysis
#                     title_lower = article['title'].lower()
#                     if any(word in title_lower for word in ['gain', 'rise', 'growth', 'profit', 'strong']):
#                         sentiment = 'Positive'
#                         score = 0.7
#                     elif any(word in title_lower for word in ['fall', 'decline', 'loss', 'weak', 'drop']):
#                         sentiment = 'Negative'
#                         score = 0.7
#                     else:
#                         sentiment = 'Neutral'
#                         score = 0.5
                    
#                     real_articles.append({
#                         "title": article['title'].strip(),
#                         "url": article.get('link', ''),
#                         "source": article.get('publisher', 'Yahoo Finance'),
#                         "sentiment": sentiment,
#                         "sentiment_score": score,
#                         "is_real": True
#                     })
        
#         logger.info(f"Successfully retrieved {len(real_articles)} real articles")
        
#     except Exception as e:
#         logger.warning(f"Could not fetch real news: {e}")
    
#     return real_articles

# @celery.task
# def run_intelligence_analysis(job_id: str):
#     """Simplified intelligence analysis that always provides results"""
#     db = SessionLocal()
#     job = None
    
#     try:
#         logger.info(f"Starting intelligence analysis for job {job_id}")
        
#         # Get job
#         job = db.query(AnalysisJob).filter(AnalysisJob.id == UUID(job_id)).first()
#         if not job or not job.result:
#             raise ValueError(f"Job {job_id} not found or has no initial data.")
        
#         job.status = "INTELLIGENCE_GATHERING"
#         db.commit()
        
#         current_data = job.result
#         ticker = current_data.get("ticker")
#         company_name = current_data.get("company_name", ticker.replace('.NS', ''))
        
#         logger.info(f"Analyzing {company_name} ({ticker})")
        
#         # Get basic stock information
#         stock_info = get_stock_basic_info(ticker)
#         logger.info(f"Stock info: {stock_info['name']} - {stock_info['sector']}")
        
#         # Try to get real news first
#         real_articles = try_real_news_sources(ticker, company_name)
        
#         # Create realistic articles
#         realistic_articles = create_realistic_articles(ticker, company_name, stock_info)
        
#         # Combine real and realistic articles
#         all_articles = real_articles + realistic_articles
        
#         # Remove duplicates and limit to 10 articles
#         seen_titles = set()
#         unique_articles = []
#         for article in all_articles:
#             if article['title'] not in seen_titles:
#                 seen_titles.add(article['title'])
#                 unique_articles.append(article)
        
#         final_articles = unique_articles[:10]
        
#         # Count sentiments
#         sentiment_counts = {'Positive': 0, 'Negative': 0, 'Neutral': 0}
#         for article in final_articles:
#             sentiment_counts[article['sentiment']] += 1
        
#         # Create intelligence briefing
#         intelligence_briefing = {
#             "articles": final_articles,
#             "sentiment_summary": {
#                 "total_items": len(final_articles),
#                 "positive": sentiment_counts['Positive'],
#                 "negative": sentiment_counts['Negative'],
#                 "neutral": sentiment_counts['Neutral'],
#                 "real_articles": len(real_articles),
#                 "generated_articles": len(realistic_articles),
#                 "analysis_timestamp": datetime.now().isoformat()
#             }
#         }
        
#         # Update job result
#         new_result = current_data.copy()
#         new_result['intelligence_briefing'] = intelligence_briefing
#         job.result = new_result
#         job.status = "INTELLIGENCE_COMPLETE"
        
#         db.commit()
        
#         logger.info(f"Intelligence analysis completed successfully:")
#         logger.info(f"- Total articles: {len(final_articles)}")
#         logger.info(f"- Real articles: {len(real_articles)}")
#         logger.info(f"- Generated articles: {len(realistic_articles)}")
#         logger.info(f"- Sentiment: {sentiment_counts}")
        
#         return str(job.result)
        
#     except Exception as e:
#         logger.error(f"Intelligence analysis failed for job {job_id}: {e}")
        
#         if job:
#             job.status = "FAILED"
#             error_data = job.result if job.result else {}
#             error_data['error'] = f"Intelligence analysis failed: {str(e)}"
#             job.result = error_data
#             db.commit()
        
#         return f"Error: {e}"
        
#     finally:
#         db.close()









# from celery_worker import celery
# from core.database import SessionLocal
# from models.analysis_job import AnalysisJob
# from tools.news_tools import get_combined_news_and_sentiment
# from uuid import UUID

# @celery.task
# def run_intelligence_analysis(job_id: str):
#     with SessionLocal() as db:
#         job = db.query(AnalysisJob).filter(AnalysisJob.id == UUID(job_id)).first()
#         if not job or not job.result:
#             print(f"Job {job_id} not found or has no data for intelligence.")
#             return
        
#         try:
#             job.status = "INTELLIGENCE_GATHERING"
#             db.commit()

#             current_data = job.result
#             ticker = current_data.get("ticker")
#             company_name = current_data.get("company_name")
            
#             intelligence_briefing = get_combined_news_and_sentiment(ticker, company_name)
            
#             new_result = dict(current_data)
#             new_result['intelligence_briefing'] = intelligence_briefing
#             job.result = new_result
            
#             db.commit()
#             print(f"Intelligence analysis for job {job_id} completed successfully.")
#             return "Intelligence gathering successful."
#         except Exception as e:
#             print(f"Error during intelligence analysis for job {job_id}: {e}")
#             job.status = "FAILED"
#             error_data = job.result if job.result else {}
#             error_data['error'] = f"Intelligence analysis failed: {str(e)}"
#             job.result = error_data
#             db.commit()
#             return f"Intelligence gathering failed: {e}"








from celery_worker import celery
from tools.news_tools import get_combined_news_and_sentiment

@celery.task
def get_intelligence_task(ticker: str, company_name: str):
    print(f"Executing get_intelligence_task for {company_name}...")
    # This task now depends on the company_name from the first task's result
    return get_combined_news_and_sentiment(ticker, company_name)