CabraLlama3 / app.py
nicolasdec's picture
Update app.py
c3a1556 verified
raw
history blame
4.92 kB
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">BotBot Cabra Llama 3 8b</h1>
<p>Converse com o modelo <a href="https://huggingface.co/botbot-ai/CabraLlama3-8b"><b>BotBot Cabra Llama3 8b</b></a>. É bem lento por ser CPU...</p>
<p>🔎 Conheça os nossos outros <a href="https://huggingface.co/collections/botbot-ai/models-6604c2069ceef04f834ba99b3">modelos Cabra</a>.</p>
<p></p>
</div>
'''
LICENSE = """
<p/>
---
Esse modelo pode gerar inverdades, mentirar ou ofensas. Somente para teste e validação de modelos de linguagem. Poribido uso comerical.
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://uploads-ssl.webflow.com/65f77c0240ae1c68f8192771/66299ba8957d9bb8fb5d1d12_image.png" style="width: 70%; max-width: 550px; height: auto; opacity: 0.6; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">BotBot Cabra</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Faça uma pergunta...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("botbot-ai/CabraLlama3-8b")
model = AutoModelForCausalLM.from_pretrained("botbot-ai/CabraLlama3-8b", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicar espaço", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Paramentos", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.6,
label="Temperatura",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max novos tokens",
render=False ),
],
examples=[
['Como cirar uma base humana em marte, em 5 passos?'],
['Who is Elon Musk?'],
['Quem desenhou e criou Brasilia?'],
['Traduz o seguite texto: "The quick brown fox jumps over the lazy dog."'],
['Justify why a penguin might make a good king of the jungle.']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()