a
File size: 2,110 Bytes
dd76c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Teachable Machine Image Model</title>
</head>
<body>
    <div>Teachable Machine Image Model</div>
    <div id="webcam-container"></div>
    <div id="label-container"></div>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest/dist/tf.min.js"></script>
    <script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@latest/dist/teachablemachine-image.min.js"></script>
    <script type="text/javascript">
        const URL = "https://teachablemachine.withgoogle.com/models/ZPfAhDYCh/";

        let model, webcam, labelContainer, maxPredictions;

        async function init() {
            const modelURL = URL + "model.json";
            const metadataURL = URL + "metadata.json";

            model = await tmImage.load(modelURL, metadataURL);
            maxPredictions = model.getTotalClasses();

            const flip = true;
            webcam = new tmImage.Webcam(200, 200, flip);
            await webcam.setup();
            await webcam.play();
            window.requestAnimationFrame(loop);

            document.getElementById("webcam-container").appendChild(webcam.canvas);
            labelContainer = document.getElementById("label-container");
            for (let i = 0; i < maxPredictions; i++) {
                labelContainer.appendChild(document.createElement("div"));
            }
        }

        async function loop() {
            webcam.update();
            await predict();
            window.requestAnimationFrame(loop);
        }

        async function predict() {
            const prediction = await model.predict(webcam.canvas);
            for (let i = 0; i < maxPredictions; i++) {
                const classPrediction = prediction[i].className + ": " + prediction[i].probability.toFixed(2);
                labelContainer.childNodes[i].innerHTML = classPrediction;
            }
        }

        init();  // Automatically start the model when the page loads
    </script>
</body>
</html>