hy / app.py
boompack's picture
Update app.py
53d44b2 verified
raw
history blame
13.4 kB
from transformers import pipeline
from dataclasses import dataclass, field
from typing import List, Optional, Dict, Any
import re
from datetime import datetime
import logging
import html
from uuid import uuid4
import torch
import gradio as gr
import emoji
# Настройка логирования
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class Comment:
"""Представляет комментарий Instagram со всеми метаданными"""
id: str = field(default_factory=lambda: str(uuid4()))
username: str = ""
time: str = ""
content: str = ""
likes: int = 0
level: int = 0
parent_id: Optional[str] = None
replies: List['Comment'] = field(default_factory=list)
is_verified: bool = False
mentions: List[str] = field(default_factory=list)
hashtags: List[str] = field(default_factory=list)
is_deleted: bool = False
sentiment: Optional[str] = None
language: Optional[str] = None
emojis: List[str] = field(default_factory=list)
def __post_init__(self):
if len(self.content) > 2200:
logger.warning(f"Comment content exceeds 2200 characters for user {self.username}")
self.content = self.content[:2200] + "..."
class InstagramCommentAnalyzer:
"""Анализатор комментариев Instagram с расширенной функциональностью"""
COMMENT_PATTERN = r'''
(?P<username>[\w\u0400-\u04FF.-]+)\s*
(?P<time>(?:\d+\s+(?:нед|мин|ч|д|мес|год|sec|min|h|d|w|mon|y)\.?))\s*
(?P<content>.*?)
(?:(?:Отметки|Likes)\s*"?Нравится"?:\s*(?P<likes>\d+))?
(?:Ответить|Reply)?(?:Показать\sперевод|Show\stranslation)?(?:Нравится|Like)?
'''
TIME_MAPPING = {
'нед': 'week', 'мин': 'minute', 'ч': 'hour',
'д': 'day', 'мес': 'month', 'год': 'year',
'w': 'week', 'h': 'hour', 'd': 'day',
'mon': 'month', 'y': 'year'
}
def __init__(self, max_depth: int = 10, max_comment_length: int = 2200):
"""Инициализация анализатора"""
self.check_dependencies()
self.max_depth = max_depth
self.max_comment_length = max_comment_length
self.pattern = re.compile(self.COMMENT_PATTERN, re.VERBOSE | re.DOTALL)
self.comments: List[Comment] = []
self.stats = self.initialize_stats()
self.sentiment_analyzer = self.load_sentiment_model()
def initialize_stats(self) -> Dict[str, int]:
"""Инициализация статистики"""
return {
'total_comments': 0,
'deleted_comments': 0,
'empty_comments': 0,
'max_depth_reached': 0,
'truncated_comments': 0,
'processed_mentions': 0,
'processed_hashtags': 0,
'processed_emojis': 0,
'failed_parses': 0
}
def check_dependencies(self):
"""Проверка зависимостей"""
required_packages = ['torch', 'transformers', 'emoji']
for package in required_packages:
try:
__import__(package)
except ImportError:
logger.error(f"Required package {package} is not installed")
raise
def load_sentiment_model(self):
"""Загрузка модели анализа тональности"""
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
return pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=device
)
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise
def normalize_text(self, text: str) -> str:
"""Улучшенная нормализация текста"""
text = html.unescape(text)
text = ' '.join(text.split())
text = re.sub(r'[\u200b\ufeff\u200c]', '', text)
return text
def extract_emojis(self, text: str) -> List[str]:
"""Извлечение эмодзи из текста"""
return [c for c in text if c in emoji.EMOJI_DATA]
def normalize_time(self, time_str: str) -> str:
"""Нормализация временных меток"""
for rus, eng in self.TIME_MAPPING.items():
if rus in time_str:
return time_str.replace(rus, eng)
return time_str
def clean_content(self, content: str) -> str:
"""Очистка содержимого комментария"""
content = content.strip()
content = re.sub(r'\s+', ' ', content)
if len(content) > self.max_comment_length:
self.stats['truncated_comments'] += 1
content = content[:self.max_comment_length] + "..."
return content
def extract_metadata(self, comment: Comment) -> None:
"""Извлечение метаданных из комментария"""
try:
# Извлечение упоминаний и хэштегов
comment.mentions = re.findall(r'@(\w+)', comment.content)
comment.hashtags = re.findall(r'#(\w+)', comment.content)
# Извлечение эмодзи
comment.emojis = self.extract_emojis(comment.content)
# Обновление статистики
self.stats['processed_mentions'] += len(comment.mentions)
self.stats['processed_hashtags'] += len(comment.hashtags)
self.stats['processed_emojis'] += len(comment.emojis)
# Проверка верификации
comment.is_verified = bool(re.search(r'✓|Подтвержденный', comment.username))
except Exception as e:
logger.error(f"Metadata extraction failed: {str(e)}")
def analyze_sentiment(self, text: str) -> str:
"""Анализ тональности текста"""
try:
result = self.sentiment_analyzer(text)
return result[0]['label']
except Exception as e:
logger.error(f"Sentiment analysis failed: {str(e)}")
return "UNKNOWN"
def process_comment(self, text: str, parent_id: Optional[str] = None, level: int = 0) -> Optional[Comment]:
"""Обработка отдельного комментария"""
if not self.validate_input(text):
return None
if level > self.max_depth:
logger.warning(f"Maximum depth {self.max_depth} exceeded")
self.stats['max_depth_reached'] += 1
return None
try:
text = self.normalize_text(text)
match = self.pattern.match(text)
if not match:
alt_match = self.alternative_parse(text)
if not alt_match:
raise ValueError(f"Could not parse comment: {text[:100]}...")
match = alt_match
data = match.groupdict()
comment = Comment(
username=data['username'].strip(),
time=self.normalize_time(data['time']),
content=self.clean_content(data['content']),
likes=self.parse_likes(data.get('likes', '0')),
level=level,
parent_id=parent_id
)
# Анализ тональности и метаданных
comment.sentiment = self.analyze_sentiment(comment.content)
self.extract_metadata(comment)
self.stats['total_comments'] += 1
return comment
except Exception as e:
logger.error(f"Error processing comment: {str(e)}", exc_info=True)
self.stats['failed_parses'] += 1
return self.create_damaged_comment()
def alternative_parse(self, text: str) -> Optional[re.Match]:
"""Альтернативный метод парсинга для сложных случаев"""
alternative_patterns = [
# Более простой паттерн
r'(?P<username>[\w\u0400-\u04FF.-]+)\s*(?P<content>.*?)(?P<time>\d+\s+\w+\.?)(?P<likes>\d+)?',
# Паттерн для мобильной версии
r'(?P<username>[\w\u0400-\u04FF.-]+)\s*(?P<content>.*?)(?P<time>\d+\s+\w+)(?:Like)?(?P<likes>\d+)?'
]
for pattern in alternative_patterns:
try:
match = re.compile(pattern, re.VERBOSE | re.DOTALL).match(text)
if match:
return match
except Exception:
continue
return None
def parse_likes(self, likes_str: str) -> int:
"""Безопасный парсинг количества лайков"""
try:
return int(re.sub(r'\D', '', likes_str) or 0)
except (ValueError, TypeError):
return 0
def create_damaged_comment(self) -> Comment:
"""Создание заглушки для поврежденного комментария"""
return Comment(
username="[damaged]",
time="unknown",
content="[Поврежденные данные]",
is_deleted=True
)
def validate_input(self, text: str) -> bool:
"""Валидация входного текста"""
if not text or not isinstance(text, str):
logger.error("Invalid input: text must be non-empty string")
return False
if len(text) > 50000:
logger.error("Input text too large")
return False
return True
def format_comment(self, comment: Comment, index: int) -> str:
"""Форматирование комментария для вывода"""
try:
if comment.is_deleted:
return f'{index}. "[УДАЛЕНО]"'
emoji_str = ' '.join(comment.emojis) if comment.emojis else ''
mentions_str = ', '.join(comment.mentions) if comment.mentions else ''
hashtags_str = ', '.join(comment.hashtags) if comment.hashtags else ''
return (
f'{index}. "{comment.username}" "{comment.time}" '
f'"{comment.content}" "Лайки: {comment.likes}" '
f'"Настроение: {comment.sentiment}" '
f'"Эмодзи: {emoji_str}" '
f'"Упоминания: {mentions_str}" '
f'"Хэштеги: {hashtags_str}"'
)
except Exception as e:
logger.error(f"Error formatting comment: {str(e)}")
return f'{index}. "[ОШИБКА ФОРМАТИРОВАНИЯ]"'
def process_comments(self, text: str) -> List[str]:
"""Обработка всех комментариев"""
try:
self.stats = self.initialize_stats()
text = self.normalize_text(text)
raw_comments = text.split('ОтветитьНравится')
formatted_comments = []
for i, raw_comment in enumerate(raw_comments, 1):
if not raw_comment.strip():
continue
comment = self.process_comment(raw_comment)
if comment:
formatted_comments.append(self.format_comment(comment, i))
return formatted_comments
except Exception as e:
logger.error(f"Error processing comments: {str(e)}")
return ["[ОШИБКА ОБРАБОТКИ КОММЕНТАРИЕВ]"]
def create_interface():
"""Создание интерфейса Gradio"""
analyzer = InstagramCommentAnalyzer()
def analyze_text(text: str):
formatted_comments = analyzer.process_comments(text)
return "\n".join(formatted_comments)
iface = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(
lines=10,
placeholder="Вставьте текст комментариев здесь...",
label="Входной текст"
),
outputs=gr.Textbox(
lines=20,
placeholder="Результаты анализа будут отображены здесь...",
label="Результаты анализа"
),
title="Instagram Comment Analyzer",
description="Анализатор комментариев Instagram с поддержкой эмодзи и мультиязычности",
theme="default",
analytics_enabled=False,
)
return iface
def main():
"""Основная функция запуска приложения"""
try:
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise
if __name__ == "__main__":
main()