File size: 7,389 Bytes
2c5fbe9
60e12de
5be6938
60e12de
 
 
 
 
5be6938
be283ee
60e12de
 
 
 
 
 
be283ee
60e12de
 
 
 
 
 
 
 
 
 
 
 
 
 
55ab780
60e12de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be6938
60e12de
 
 
 
 
 
 
 
 
 
 
 
 
5be6938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5fbe9
 
5be6938
 
 
 
 
 
2c5fbe9
60e12de
 
 
 
 
 
 
5be6938
 
 
 
 
 
 
 
60e12de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5fbe9
60e12de
 
 
 
 
 
5be6938
 
60e12de
 
 
 
 
 
 
5be6938
 
 
60e12de
5be6938
 
 
 
 
 
 
60e12de
 
5be6938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e12de
2c5fbe9
 
 
60e12de
 
2c5fbe9
 
 
 
60e12de
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from transformers import pipeline
from dataclasses import dataclass, field
from typing import List, Optional, Dict
import re
from datetime import datetime
import logging
import html
from uuid import uuid4
import torch

# Настройка логирования
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

@dataclass
class Comment:
    id: str = field(default_factory=lambda: str(uuid4()))
    username: str = ""
    time: str = ""
    content: str = ""
    likes: int = 0
    level: int = 0
    parent_id: Optional[str] = None
    replies: List['Comment'] = field(default_factory=list)
    is_verified: bool = False
    mentions: List[str] = field(default_factory=list)
    hashtags: List[str] = field(default_factory=list)
    is_deleted: bool = False
    sentiment: Optional[str] = None

    def __post_init__(self):
        if len(self.content) > 2200:
            logger.warning(f"Comment content exceeds 2200 characters for user {self.username}")
            self.content = self.content[:2200] + "..."

class InstagramCommentAnalyzer:
    COMMENT_PATTERN = r'''
        (?P<username>[\w.-]+)\s+
        (?P<time>\d+\s+нед\.)
        (?P<content>.*?)
        (?:Отметки\s*"Нравится":\s*(?P<likes>\d+))?
        (?:Ответить)?(?:Показать\sперевод)?(?:Нравится)?
    '''

    def __init__(self, max_depth: int = 10, max_comment_length: int = 2200):
        self.check_dependencies()
        self.max_depth = max_depth
        self.max_comment_length = max_comment_length
        self.pattern = re.compile(self.COMMENT_PATTERN, re.VERBOSE | re.DOTALL)
        self.comments: List[Comment] = []
        self.stats: Dict[str, int] = {
            'total_comments': 0,
            'deleted_comments': 0,
            'empty_comments': 0,
            'max_depth_reached': 0,
            'truncated_comments': 0,
            'processed_mentions': 0,
            'processed_hashtags': 0
        }
        self.sentiment_analyzer = self.load_sentiment_model()

    def check_dependencies(self):
        required_packages = ['torch', 'transformers', 'numpy']
        for package in required_packages:
            try:
                __import__(package)
            except ImportError:
                logger.error(f"Required package {package} is not installed")
                raise

    def load_sentiment_model(self):
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            logger.info(f"Using device: {device}")
            return pipeline(
                "sentiment-analysis",
                model="distilbert-base-uncased-finetuned-sst-2-english",
                device=device
            )
        except Exception as e:
            logger.error(f"Model loading failed: {str(e)}")
            raise

    def analyze_sentiment(self, text: str) -> str:
        try:
            result = self.sentiment_analyzer(text)
            return result[0]['label']
        except Exception as e:
            logger.error(f"Sentiment analysis failed: {str(e)}")
            return "UNKNOWN"

    def normalize_text(self, text: str) -> str:
        text = html.unescape(text)
        text = ' '.join(text.split())
        text = re.sub(r'[\u200b\ufeff\u200c]', '', text)
        return text

    def extract_metadata(self, comment: Comment) -> None:
        try:
            comment.mentions = re.findall(r'@(\w+)', comment.content)
            self.stats['processed_mentions'] += len(comment.mentions)
            comment.hashtags = re.findall(r'#(\w+)', comment.content)
            self.stats['processed_hashtags'] += len(comment.hashtags)
            comment.is_verified = bool(re.search(r'✓|Подтвержденный', comment.username))
        except Exception as e:
            logger.error(f"Metadata extraction failed: {str(e)}")

    def process_comment(self, text: str, parent_id: Optional[str] = None, level: int = 0) -> Optional[Comment]:
        if level > self.max_depth:
            logger.warning(f"Maximum depth {self.max_depth} exceeded")
            self.stats['max_depth_reached'] += 1
            return None

        if not text.strip():
            self.stats['empty_comments'] += 1
            return None

        try:
            match = self.pattern.match(text)
            if not match:
                raise ValueError(f"Could not parse comment: {text[:100]}...")

            data = match.groupdict()
            comment = Comment(
                username=data['username'],
                time=data['time'],
                content=data['content'].strip(),
                likes=int(data['likes'] or 0),
                level=level,
                parent_id=parent_id
            )

            if len(comment.content) > self.max_comment_length:
                self.stats['truncated_comments'] += 1
                comment.content = comment.content[:self.max_comment_length] + "..."

            comment.sentiment = self.analyze_sentiment(comment.content)
            self.extract_metadata(comment)
            self.stats['total_comments'] += 1
            return comment

        except Exception as e:
            logger.error(f"Error processing comment: {str(e)}")
            self.stats['deleted_comments'] += 1
            return Comment(
                username="[damaged]",
                time="",
                content="[Поврежденные данные]",
                is_deleted=True
            )

    def format_comment(self, comment: Comment, index: int) -> str:
        try:
            if comment.is_deleted:
                return f'{index}. "[УДАЛЕНО]" "" "" "Нравится 0"'

            return (
                f'{index}. "{comment.username}" "{comment.time}" '
                f'"{comment.content}" "Нравится {comment.likes}" "Настроение {comment.sentiment}"'
            )
        except Exception as e:
            logger.error(f"Error formatting comment: {str(e)}")
            return f'{index}. "[ОШИБКА ФОРМАТИРОВАНИЯ]"'

    def process_comments(self, text: str) -> List[str]:
        try:
            self.stats = {key: 0 for key in self.stats}
            text = self.normalize_text(text)
            raw_comments = text.split('ОтветитьНравится')
            formatted_comments = []
            
            for i, raw_comment in enumerate(raw_comments, 1):
                if not raw_comment.strip():
                    continue

                comment = self.process_comment(raw_comment)
                if comment:
                    formatted_comments.append(self.format_comment(comment, i))

            return formatted_comments
        except Exception as e:
            logger.error(f"Error processing comments: {str(e)}")
            return ["[ОШИБКА ОБРАБОТКИ КОММЕНТАРИЕВ]"]
def main():
    example_text = """
    user1 2 нед. This is a positive comment! Отметки "Нравится": 25
    user2 3 нед. This is a negative comment! Отметки "Нравится": 5
    """

    analyzer = InstagramCommentAnalyzer()
    formatted_comments = analyzer.process_comments(example_text)
    for formatted_comment in formatted_comments:
        print(formatted_comment)

if __name__ == "__main__":
    main()