#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright @2023 RhapsodyAI, ModelBest Inc. (modelbest.cn) # # @author: bokai xu # @date: 2024/07/13 # import tqdm from PIL import Image import hashlib import torch import fitz import threading import gradio as gr import spaces import os from transformers import AutoModel from transformers import AutoTokenizer from PIL import Image import torch import os import numpy as np import json cache_dir = '/data/kb_cache' os.makedirs(cache_dir, exist_ok=True) def get_image_md5(img: Image.Image): img_byte_array = img.tobytes() hash_md5 = hashlib.md5() hash_md5.update(img_byte_array) hex_digest = hash_md5.hexdigest() return hex_digest def calculate_md5_from_binary(binary_data): hash_md5 = hashlib.md5() hash_md5.update(binary_data) return hash_md5.hexdigest() @spaces.GPU(duration=120) def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()): global model, tokenizer knowledge_base_name = calculate_md5_from_binary(pdf_file_binary) this_cache_dir = os.path.join(cache_dir, knowledge_base_name) os.makedirs(this_cache_dir, exist_ok=True) with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file: file.write(pdf_file_binary) dpi = 100 doc = fitz.open("pdf", pdf_file_binary) reps_list = [] images = [] image_md5s = [] for page in progress.tqdm(doc): # with self.lock: # because we hope one 16G gpu only process one image at the same time pix = page.get_pixmap(dpi=dpi) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) image_md5 = get_image_md5(image) image_md5s.append(image_md5) with torch.no_grad(): reps = model(text=[''], image=[image], tokenizer=tokenizer).reps reps_list.append(reps.squeeze(0).cpu().numpy()) images.append(image) for idx in range(len(images)): image = images[idx] image_md5 = image_md5s[idx] cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png") image.save(cache_image_path) np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list) with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f: for item in image_md5s: f.write(item+'\n') return knowledge_base_name # @spaces.GPU def retrieve_gradio(knowledge_base: str, query: str, topk: int): global model, tokenizer target_cache_dir = os.path.join(cache_dir, knowledge_base) if not os.path.exists(target_cache_dir): return None md5s = [] with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f: for line in f: md5s.append(line.rstrip('\n')) doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy")) query_with_instruction = "Represent this query for retrieving relavant document: " + query with torch.no_grad(): query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu() query_md5 = hashlib.md5(query.encode()).hexdigest() with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f: f.write(json.dumps( { "query": query }, indent=4, ensure_ascii=False )) doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0) similarities = torch.matmul(query_rep, doc_reps_cat.T) topk_values, topk_doc_ids = torch.topk(similarities, k=topk) topk_values_np = topk_values.cpu().numpy() topk_doc_ids_np = topk_doc_ids.cpu().numpy() similarities_np = similarities.cpu().numpy() images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np] return images_topk device = 'cuda' model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True) model.to(device) with gr.Blocks() as app: gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI") with gr.Row(): file_input = gr.File(type="binary", label="Upload PDF") file_result = gr.Text(label="Knowledge Base ID (remember this!)") process_button = gr.Button("Process PDF") process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result) with gr.Row(): kb_id_input = gr.Text(label="Your Knowledge Base ID") query_input = gr.Text(label="Your Queston") topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K") retrieve_button = gr.Button("Retrieve") with gr.Row(): images_output = gr.Gallery(label="Retrieved Pages") retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output) gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.") app.launch()