File size: 7,080 Bytes
7264b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1a2ae
d90ed2d
 
 
 
 
 
 
 
7264b3a
d90ed2d
 
7264b3a
 
 
 
 
 
 
 
 
 
 
 
 
9a6b755
d90ed2d
 
 
 
7264b3a
d90ed2d
 
 
 
 
 
 
 
7264b3a
d90ed2d
 
 
 
 
 
 
 
 
 
7264b3a
d90ed2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7264b3a
d90ed2d
 
9a6b755
d90ed2d
 
 
 
 
 
 
7264b3a
d90ed2d
 
 
 
7264b3a
d90ed2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6b755
 
 
 
 
 
 
 
 
d90ed2d
 
 
9a6b755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d90ed2d
 
 
 
 
 
 
 
9a6b755
d3da251
9a6b755
 
7264b3a
d90ed2d
 
 
 
7264b3a
d90ed2d
 
 
9a6b755
d90ed2d
 
 
b3fffcd
9a6b755
 
 
 
d90ed2d
 
7264b3a
d90ed2d
 
9a6b755
 
 
d90ed2d
 
 
7264b3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright @2023 RhapsodyAI, ModelBest Inc. (modelbest.cn)
#
# @author: bokai xu <[email protected]>
# @date: 2024/07/13
#


import tqdm
from PIL import Image
import hashlib
import torch
import fitz
import threading
import gradio as gr
import spaces
import os
from transformers import AutoModel
from transformers import AutoTokenizer
from PIL import Image
import torch
import os
import numpy as np
import json

cache_dir = '/data/kb_cache'
os.makedirs(cache_dir, exist_ok=True)

def get_image_md5(img: Image.Image):
    img_byte_array = img.tobytes()
    hash_md5 = hashlib.md5()
    hash_md5.update(img_byte_array)
    hex_digest = hash_md5.hexdigest()
    return hex_digest

def calculate_md5_from_binary(binary_data):
    hash_md5 = hashlib.md5()
    hash_md5.update(binary_data)
    return hash_md5.hexdigest()

@spaces.GPU(duration=100)
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
    global model, tokenizer

    knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
    
    this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
    os.makedirs(this_cache_dir, exist_ok=True)

    with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file:
        file.write(pdf_file_binary)

    dpi = 100
    doc = fitz.open("pdf", pdf_file_binary)
    
    reps_list = []
    images = []
    image_md5s = []

    for page in progress.tqdm(doc):
        # with self.lock: # because we hope one 16G gpu only process one image at the same time
        pix = page.get_pixmap(dpi=dpi)
        image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        image_md5 = get_image_md5(image)
        image_md5s.append(image_md5)
        with torch.no_grad():
            reps = model(text=[''], image=[image], tokenizer=tokenizer).reps
        reps_list.append(reps.squeeze(0).cpu().numpy())
        images.append(image)

    for idx in range(len(images)):
        image = images[idx]
        image_md5 = image_md5s[idx]
        cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
        image.save(cache_image_path)

    np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list)

    with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
        for item in image_md5s:
            f.write(item+'\n')
    
    return knowledge_base_name

# @spaces.GPU
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
    global model, tokenizer

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    if not os.path.exists(target_cache_dir):
        return None
    
    md5s = []
    with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f:
        for line in f:
            md5s.append(line.rstrip('\n'))
    
    doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))

    query_with_instruction = "Represent this query for retrieving relavant document: " + query
    with torch.no_grad():
        query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)

    similarities = torch.matmul(query_rep, doc_reps_cat.T)

    topk_values, topk_doc_ids = torch.topk(similarities, k=topk)

    topk_values_np = topk_values.cpu().numpy()

    topk_doc_ids_np = topk_doc_ids.cpu().numpy()

    similarities_np = similarities.cpu().numpy()

    images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
        f.write(json.dumps(
            {
                "knowledge_base": knowledge_base,
                "query": query,
                "retrived_docs": [os.path.join(target_cache_dir, f"{md5s[idx]}.png") for idx in topk_doc_ids_np]
            }, indent=4, ensure_ascii=False
        ))

    return images_topk


def upvote(knowledge_base, query):
    global model, tokenizer

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
        data = json.loads(f.read())

    data["user_preference"] = "upvote"

    with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
        f.write(json.dumps(data, indent=4, ensure_ascii=False))

    print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))

    return


def downvote(knowledge_base, query):
    global model, tokenizer

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
        data = json.loads(f.read())

    data["user_preference"] = "downvote"

    with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
        f.write(json.dumps(data, indent=4, ensure_ascii=False))

    print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
    return


device = 'cuda' 
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.to(device)


with gr.Blocks() as app:
    gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI")

    gr.Markdown("- We open-sourced our model at [RhapsodyAI/minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)")
    gr.Markdown("- Currently we support PDF document with less than 50 pages, PDF over 50 pages will reach GPU time limit.")
    
    with gr.Row():
        file_input = gr.File(type="binary", label="Upload PDF")
        file_result = gr.Text(label="Knowledge Base ID (remember this!)")
        process_button = gr.Button("Process PDF")
    
    process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)

    with gr.Row():
        kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here:)")
        query_input = gr.Text(label="Your Queston")
        topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
        retrieve_button = gr.Button("Retrieve")
    
    with gr.Row():
        downvote_button = gr.Button("🤣Downvote")
        upvote_button = gr.Button("🤗Upvote")
    
    with gr.Row():
        images_output = gr.Gallery(label="Retrieved Pages")
    
    retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)

    upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
    downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)

    gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")

app.launch()