Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -179,38 +179,38 @@ def downvote(knowledge_base, query):
|
|
179 |
return
|
180 |
|
181 |
|
|
|
182 |
device = 'cuda'
|
|
|
|
|
183 |
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
184 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
185 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
186 |
model.eval()
|
187 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
|
190 |
@spaces.GPU(duration=50)
|
191 |
def answer_question(images, question):
|
192 |
-
|
193 |
-
gen_model_path = 'openbmb/MiniCPM-V-2_6'
|
194 |
-
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, trust_remote_code=True)
|
195 |
-
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
196 |
-
gen_model.eval()
|
197 |
-
gen_model.to(device)
|
198 |
-
print("model load success!")
|
199 |
-
|
200 |
# here each element of images is a tuple of (image_path, None).
|
201 |
-
|
202 |
images_ = [Image.open(image[0]).convert('RGB') for image in images]
|
203 |
-
|
204 |
msgs = [{'role': 'user', 'content': [*images_, question]}]
|
205 |
-
|
206 |
answer = gen_model.chat(
|
207 |
image=None,
|
208 |
msgs=msgs,
|
209 |
tokenizer=gen_tokenizer
|
210 |
)
|
211 |
-
|
212 |
print(answer)
|
213 |
-
|
214 |
return answer
|
215 |
|
216 |
|
|
|
179 |
return
|
180 |
|
181 |
|
182 |
+
|
183 |
device = 'cuda'
|
184 |
+
|
185 |
+
print("emb model load begin...")
|
186 |
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
187 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
188 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
189 |
model.eval()
|
190 |
model.to(device)
|
191 |
+
print("emb model load success!")
|
192 |
+
|
193 |
+
print("gen model load begin...")
|
194 |
+
gen_model_path = 'openbmb/MiniCPM-V-2_6'
|
195 |
+
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, trust_remote_code=True)
|
196 |
+
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
197 |
+
gen_model.eval()
|
198 |
+
gen_model.to(device)
|
199 |
+
print("gen model load success!")
|
200 |
|
201 |
|
202 |
@spaces.GPU(duration=50)
|
203 |
def answer_question(images, question):
|
204 |
+
global gen_model, gen_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# here each element of images is a tuple of (image_path, None).
|
|
|
206 |
images_ = [Image.open(image[0]).convert('RGB') for image in images]
|
|
|
207 |
msgs = [{'role': 'user', 'content': [*images_, question]}]
|
|
|
208 |
answer = gen_model.chat(
|
209 |
image=None,
|
210 |
msgs=msgs,
|
211 |
tokenizer=gen_tokenizer
|
212 |
)
|
|
|
213 |
print(answer)
|
|
|
214 |
return answer
|
215 |
|
216 |
|