import gradio as gr from transformers import AutoTokenizer from llama_cpp import Llama import torch # Configuration MODEL_PATH = "./TinyLlama-Friendly-Psychotherapist.Q4_K_S.gguf" MODEL_REPO = "thrishala/mental_health_chatbot" try: # 1. Load the tokenizer from the original model repo tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO) tokenizer.pad_token = tokenizer.eos_token tokenizer.model_max_length = 4096 # 2. Load the GGUF model with llama-cpp-python llm = Llama( model_path=MODEL_PATH, n_ctx=2048, # Context window size n_threads=4, # CPU threads n_gpu_layers=33 if torch.cuda.is_available() else 0, # GPU layers ) except Exception as e: print(f"Error loading model: {e}") exit() def generate_text_streaming(prompt, max_new_tokens=128): # Tokenize using HF tokenizer inputs = tokenizer( prompt, return_tensors="pt", truncation=True, max_length=4096 ) # Convert to string for llama.cpp full_prompt = tokenizer.decode(inputs.input_ids[0], skip_special_tokens=True) # Create generator stream = llm.create_completion( prompt=full_prompt, max_tokens=max_new_tokens, temperature=0.7, stream=True, stop=["User:", "###"], # Stop sequences ) generated_text = "" for output in stream: chunk = output["choices"][0]["text"] generated_text += chunk yield generated_text def respond(message, history, system_message, max_tokens): # Build prompt with history prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: for chunk in generate_text_streaming(prompt, max_tokens): yield chunk except Exception as e: print(f"Error: {e}") yield "An error occurred during generation." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"), ], ) if __name__ == "__main__": demo.launch()