import gradio as gr from transformers import AutoTokenizer import ctranslate2 import torch # Determine device (ctranslate2 handles device placement internally) device = "cuda" if torch.cuda.is_available() else "cpu" # Still useful for other ops model_path = "mradermacher/TinyLlama-Friendly-Psychotherapist-GGUF/TinyLlama-Friendly-Psychotherapist.Q4_K_S.gguf" try: # 1. Load the tokenizer (same as before) tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer.pad_token = tokenizer.eos_token tokenizer.model_max_length = 4096 # 2. Load the ctranslate2 model ct_model = ctranslate2.Translator(model_path) # Load the GGUF model ct_model.eval() except Exception as e: print(f"Error loading model: {e}") exit() def generate_text_streaming(prompt, max_new_tokens=128): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096).to(device) generated_tokens = [] for _ in range(max_new_tokens): # ctranslate2 generation (adjust as needed) outputs = ct_model.translate_batch( inputs.input_ids.tolist(), # ctranslate2 needs list of token ids max_length=1, # Generate one token at a time beam_size=1, # Greedy decoding ) new_token_id = outputs[0][0][-1] # Extract the generated token ID new_token = tokenizer.decode(new_token_id, skip_special_tokens=True) if new_token_id == tokenizer.eos_token_id: break generated_tokens.append(new_token_id) current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) yield current_text inputs["input_ids"] = torch.cat([inputs["input_ids"], torch.tensor([[new_token_id]], device=inputs["input_ids"].device)], dim=-1) inputs["attention_mask"] = torch.cat([inputs["attention_mask"], torch.ones(1, 1, device=inputs["attention_mask"].device)], dim=-1) def respond(message, history, system_message, max_tokens): # Build prompt with full history prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" # Keep track of the full response full_response = "" try: for token_chunk in generate_text_streaming(prompt, max_tokens): # Update the full response and yield incremental changes full_response = token_chunk yield full_response except Exception as e: print(f"Error during generation: {e}") yield "An error occurred." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"), ], ) if __name__ == "__main__": demo.launch()