Spaces:
Sleeping
Sleeping
deep seek xD
Browse files
app.py
CHANGED
|
@@ -1,73 +1,70 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
-
import
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
model_download_link = "https://huggingface.co/mradermacher/TinyLlama-Friendly-Psychotherapist-GGUF/resolve/main/TinyLlama-Friendly-Psychotherapist.Q4_K_S.gguf"
|
| 10 |
-
model_path = "./TinyLlama-Friendly-Psychotherapist.Q4_K_S.gguf" # gguf
|
| 11 |
|
| 12 |
try:
|
| 13 |
-
# 1. Load the tokenizer
|
| 14 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 15 |
tokenizer.pad_token = tokenizer.eos_token
|
| 16 |
tokenizer.model_max_length = 4096
|
| 17 |
|
| 18 |
-
# 2. Load the
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
except Exception as e:
|
| 22 |
print(f"Error loading model: {e}")
|
| 23 |
exit()
|
| 24 |
|
| 25 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 47 |
-
yield current_text
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def respond(message, history, system_message, max_tokens):
|
| 53 |
-
# Build prompt with
|
| 54 |
prompt = f"{system_message}\n"
|
| 55 |
for user_msg, bot_msg in history:
|
| 56 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
| 57 |
prompt += f"User: {message}\nAssistant:"
|
| 58 |
|
| 59 |
-
# Keep track of the full response
|
| 60 |
-
full_response = ""
|
| 61 |
-
|
| 62 |
try:
|
| 63 |
-
for
|
| 64 |
-
|
| 65 |
-
full_response = token_chunk
|
| 66 |
-
yield full_response
|
| 67 |
-
|
| 68 |
except Exception as e:
|
| 69 |
-
print(f"Error
|
| 70 |
-
yield "An error occurred."
|
| 71 |
|
| 72 |
demo = gr.ChatInterface(
|
| 73 |
respond,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
+
from llama_cpp import Llama
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# Configuration
|
| 7 |
+
MODEL_PATH = "./TinyLlama-Friendly-Psychotherapist.Q4_K_S.gguf"
|
| 8 |
+
MODEL_REPO = "thrishala/mental_health_chatbot"
|
|
|
|
|
|
|
| 9 |
|
| 10 |
try:
|
| 11 |
+
# 1. Load the tokenizer from the original model repo
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO)
|
| 13 |
tokenizer.pad_token = tokenizer.eos_token
|
| 14 |
tokenizer.model_max_length = 4096
|
| 15 |
|
| 16 |
+
# 2. Load the GGUF model with llama-cpp-python
|
| 17 |
+
llm = Llama(
|
| 18 |
+
model_path=MODEL_PATH,
|
| 19 |
+
n_ctx=2048, # Context window size
|
| 20 |
+
n_threads=4, # CPU threads
|
| 21 |
+
n_gpu_layers=33 if torch.cuda.is_available() else 0, # GPU layers
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
except Exception as e:
|
| 25 |
print(f"Error loading model: {e}")
|
| 26 |
exit()
|
| 27 |
|
| 28 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
| 29 |
+
# Tokenize using HF tokenizer
|
| 30 |
+
inputs = tokenizer(
|
| 31 |
+
prompt,
|
| 32 |
+
return_tensors="pt",
|
| 33 |
+
truncation=True,
|
| 34 |
+
max_length=4096
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Convert to string for llama.cpp
|
| 38 |
+
full_prompt = tokenizer.decode(inputs.input_ids[0], skip_special_tokens=True)
|
| 39 |
+
|
| 40 |
+
# Create generator
|
| 41 |
+
stream = llm.create_completion(
|
| 42 |
+
prompt=full_prompt,
|
| 43 |
+
max_tokens=max_new_tokens,
|
| 44 |
+
temperature=0.7,
|
| 45 |
+
stream=True,
|
| 46 |
+
stop=["User:", "###"], # Stop sequences
|
| 47 |
+
)
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
generated_text = ""
|
| 50 |
+
for output in stream:
|
| 51 |
+
chunk = output["choices"][0]["text"]
|
| 52 |
+
generated_text += chunk
|
| 53 |
+
yield generated_text
|
| 54 |
|
| 55 |
def respond(message, history, system_message, max_tokens):
|
| 56 |
+
# Build prompt with history
|
| 57 |
prompt = f"{system_message}\n"
|
| 58 |
for user_msg, bot_msg in history:
|
| 59 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
| 60 |
prompt += f"User: {message}\nAssistant:"
|
| 61 |
|
|
|
|
|
|
|
|
|
|
| 62 |
try:
|
| 63 |
+
for chunk in generate_text_streaming(prompt, max_tokens):
|
| 64 |
+
yield chunk
|
|
|
|
|
|
|
|
|
|
| 65 |
except Exception as e:
|
| 66 |
+
print(f"Error: {e}")
|
| 67 |
+
yield "An error occurred during generation."
|
| 68 |
|
| 69 |
demo = gr.ChatInterface(
|
| 70 |
respond,
|