Mental_chat / app.py
bobpopboom's picture
Update app.py
65b9bec verified
raw
history blame
2.96 kB
import gradio as gr
from transformers import AutoTokenizer
import ctranslate2
import torch
# Determine device (ctranslate2 handles device placement internally)
device = "cuda" if torch.cuda.is_available() else "cpu" # Still useful for other ops
model_path = "mradermacher/TinyLlama-Friendly-Psychotherapist-GGUF/TinyLlama-Friendly-Psychotherapist.Q4_K_S.gguf"
try:
# 1. Load the tokenizer (same as before)
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.model_max_length = 4096
# 2. Load the ctranslate2 model
ct_model = ctranslate2.Translator(model_path) # Load the GGUF model
ct_model.eval()
except Exception as e:
print(f"Error loading model: {e}")
exit()
def generate_text_streaming(prompt, max_new_tokens=128):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096).to(device)
generated_tokens = []
for _ in range(max_new_tokens):
# ctranslate2 generation (adjust as needed)
outputs = ct_model.translate_batch(
inputs.input_ids.tolist(), # ctranslate2 needs list of token ids
max_length=1, # Generate one token at a time
beam_size=1, # Greedy decoding
)
new_token_id = outputs[0][0][-1] # Extract the generated token ID
new_token = tokenizer.decode(new_token_id, skip_special_tokens=True)
if new_token_id == tokenizer.eos_token_id:
break
generated_tokens.append(new_token_id)
current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
yield current_text
inputs["input_ids"] = torch.cat([inputs["input_ids"], torch.tensor([[new_token_id]], device=inputs["input_ids"].device)], dim=-1)
inputs["attention_mask"] = torch.cat([inputs["attention_mask"], torch.ones(1, 1, device=inputs["attention_mask"].device)], dim=-1)
def respond(message, history, system_message, max_tokens):
# Build prompt with full history
prompt = f"{system_message}\n"
for user_msg, bot_msg in history:
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
prompt += f"User: {message}\nAssistant:"
# Keep track of the full response
full_response = ""
try:
for token_chunk in generate_text_streaming(prompt, max_tokens):
# Update the full response and yield incremental changes
full_response = token_chunk
yield full_response
except Exception as e:
print(f"Error during generation: {e}")
yield "An error occurred."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly and helpful mental health chatbot.",
label="System message",
),
gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"),
],
)
if __name__ == "__main__":
demo.launch()