Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import gradio as gr | |
| from transformers import AutoTokenizer | |
| import ctranslate2 | |
| import torch | |
| # Determine device (ctranslate2 handles device placement internally) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" # Still useful for other ops | |
| model_path = "mradermacher/TinyLlama-Friendly-Psychotherapist-GGUF/TinyLlama-Friendly-Psychotherapist.Q4_K_S.gguf" | |
| try: | |
| # 1. Load the tokenizer (same as before) | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.model_max_length = 4096 | |
| # 2. Load the ctranslate2 model | |
| ct_model = ctranslate2.Translator(model_path) # Load the GGUF model | |
| ct_model.eval() | |
| except Exception as e: | |
| print(f"Error loading model: {e}") | |
| exit() | |
| def generate_text_streaming(prompt, max_new_tokens=128): | |
| inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096).to(device) | |
| generated_tokens = [] | |
| for _ in range(max_new_tokens): | |
| # ctranslate2 generation (adjust as needed) | |
| outputs = ct_model.translate_batch( | |
| inputs.input_ids.tolist(), # ctranslate2 needs list of token ids | |
| max_length=1, # Generate one token at a time | |
| beam_size=1, # Greedy decoding | |
| ) | |
| new_token_id = outputs[0][0][-1] # Extract the generated token ID | |
| new_token = tokenizer.decode(new_token_id, skip_special_tokens=True) | |
| if new_token_id == tokenizer.eos_token_id: | |
| break | |
| generated_tokens.append(new_token_id) | |
| current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
| yield current_text | |
| inputs["input_ids"] = torch.cat([inputs["input_ids"], torch.tensor([[new_token_id]], device=inputs["input_ids"].device)], dim=-1) | |
| inputs["attention_mask"] = torch.cat([inputs["attention_mask"], torch.ones(1, 1, device=inputs["attention_mask"].device)], dim=-1) | |
| def respond(message, history, system_message, max_tokens): | |
| # Build prompt with full history | |
| prompt = f"{system_message}\n" | |
| for user_msg, bot_msg in history: | |
| prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" | |
| prompt += f"User: {message}\nAssistant:" | |
| # Keep track of the full response | |
| full_response = "" | |
| try: | |
| for token_chunk in generate_text_streaming(prompt, max_tokens): | |
| # Update the full response and yield incremental changes | |
| full_response = token_chunk | |
| yield full_response | |
| except Exception as e: | |
| print(f"Error during generation: {e}") | |
| yield "An error occurred." | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a friendly and helpful mental health chatbot.", | |
| label="System message", | |
| ), | |
| gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |