bmas10 commited on
Commit
32e6759
·
verified ·
1 Parent(s): 11e25c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -67
app.py CHANGED
@@ -6,75 +6,9 @@ from huggingface_hub import InferenceClient
6
  from transformers import pipeline, AutoModel, AutoTokenizer
7
 
8
  model_name = "bmas10/ForJerry"
9
- model = AutoModel.from_pretrained(model_name)
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
  messages = [
12
  {"role": "user", "content": "Who are you?"},
13
  ]
14
- pipe = pipeline("text-generation", model=model)
15
  pipe(messages)
16
-
17
-
18
- '''
19
- def chat(input_text, history=[]):
20
- history.append(input_text)
21
- prompt = "\n".join(history) + "\nAI:" # Simple conversational format
22
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
23
- output = model.generate(**inputs, max_length=512, pad_token_id=tokenizer.eos_token_id)
24
- response = tokenizer.decode(output[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
25
- history.append(f"AI: {response}")
26
- return response, history
27
 
28
- """
29
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
30
- """
31
- print("starting Praveen's smarter chatbot...")
32
-
33
- """
34
- The transformer model used here is Microsoft-trained Phi-3.5-mini-instruct
35
- """
36
-
37
- #model_name = "microsoft/Phi-3.5-mini-instruct"
38
-
39
- chat_model = pipeline("text-generation", model=model_name)
40
-
41
- print("defining the chat_response function")
42
-
43
- def chat_response(
44
- message,
45
- history: list[tuple[str, str]],
46
- system_message,
47
- max_tokens
48
- ):
49
-
50
- print("Inside chat_response progressing...")
51
-
52
- messages = [{"role": "system", "content": system_message}]
53
-
54
- print ("System Messages", messages)
55
-
56
- messages.append({"role": "user", "content": message})
57
-
58
- print ("Messages after adding user messages", messages)
59
-
60
- response = chat_model(messages) #Passing system and user messages to the transformer model Phi-3.5-mini-instruct to get smarter responses
61
-
62
- print("Response received from model",response)
63
-
64
- return response[-1]['generated_text'][-1]['content']
65
- """
66
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
67
- """
68
-
69
- demo = gr.ChatInterface(
70
- chat,
71
- additional_inputs=[
72
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
73
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
74
- ],
75
- )
76
-
77
-
78
- if __name__ == "__main__":
79
- demo.launch()
80
- '''
 
6
  from transformers import pipeline, AutoModel, AutoTokenizer
7
 
8
  model_name = "bmas10/ForJerry"
 
 
9
  messages = [
10
  {"role": "user", "content": "Who are you?"},
11
  ]
12
+ pipe = pipeline("text-generation", model=model_name)
13
  pipe(messages)
 
 
 
 
 
 
 
 
 
 
 
14