Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,75 +6,9 @@ from huggingface_hub import InferenceClient
|
|
6 |
from transformers import pipeline, AutoModel, AutoTokenizer
|
7 |
|
8 |
model_name = "bmas10/ForJerry"
|
9 |
-
model = AutoModel.from_pretrained(model_name)
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
messages = [
|
12 |
{"role": "user", "content": "Who are you?"},
|
13 |
]
|
14 |
-
pipe = pipeline("text-generation", model=
|
15 |
pipe(messages)
|
16 |
-
|
17 |
-
|
18 |
-
'''
|
19 |
-
def chat(input_text, history=[]):
|
20 |
-
history.append(input_text)
|
21 |
-
prompt = "\n".join(history) + "\nAI:" # Simple conversational format
|
22 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
23 |
-
output = model.generate(**inputs, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
24 |
-
response = tokenizer.decode(output[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
|
25 |
-
history.append(f"AI: {response}")
|
26 |
-
return response, history
|
27 |
|
28 |
-
"""
|
29 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
30 |
-
"""
|
31 |
-
print("starting Praveen's smarter chatbot...")
|
32 |
-
|
33 |
-
"""
|
34 |
-
The transformer model used here is Microsoft-trained Phi-3.5-mini-instruct
|
35 |
-
"""
|
36 |
-
|
37 |
-
#model_name = "microsoft/Phi-3.5-mini-instruct"
|
38 |
-
|
39 |
-
chat_model = pipeline("text-generation", model=model_name)
|
40 |
-
|
41 |
-
print("defining the chat_response function")
|
42 |
-
|
43 |
-
def chat_response(
|
44 |
-
message,
|
45 |
-
history: list[tuple[str, str]],
|
46 |
-
system_message,
|
47 |
-
max_tokens
|
48 |
-
):
|
49 |
-
|
50 |
-
print("Inside chat_response progressing...")
|
51 |
-
|
52 |
-
messages = [{"role": "system", "content": system_message}]
|
53 |
-
|
54 |
-
print ("System Messages", messages)
|
55 |
-
|
56 |
-
messages.append({"role": "user", "content": message})
|
57 |
-
|
58 |
-
print ("Messages after adding user messages", messages)
|
59 |
-
|
60 |
-
response = chat_model(messages) #Passing system and user messages to the transformer model Phi-3.5-mini-instruct to get smarter responses
|
61 |
-
|
62 |
-
print("Response received from model",response)
|
63 |
-
|
64 |
-
return response[-1]['generated_text'][-1]['content']
|
65 |
-
"""
|
66 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
67 |
-
"""
|
68 |
-
|
69 |
-
demo = gr.ChatInterface(
|
70 |
-
chat,
|
71 |
-
additional_inputs=[
|
72 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
73 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
74 |
-
],
|
75 |
-
)
|
76 |
-
|
77 |
-
|
78 |
-
if __name__ == "__main__":
|
79 |
-
demo.launch()
|
80 |
-
'''
|
|
|
6 |
from transformers import pipeline, AutoModel, AutoTokenizer
|
7 |
|
8 |
model_name = "bmas10/ForJerry"
|
|
|
|
|
9 |
messages = [
|
10 |
{"role": "user", "content": "Who are you?"},
|
11 |
]
|
12 |
+
pipe = pipeline("text-generation", model=model_name)
|
13 |
pipe(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|