Spaces:
Sleeping
Sleeping
# Week - 3 Assignment - Integrate Traditional Chatbot with AI Service Project (Transformers) Praveen Kumar Parimi | |
#importing the required libraries including transformers | |
import base64 | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import pipeline | |
import torch | |
messages = [ | |
{"role": "user", "content": "Who are you?"}, | |
] | |
pipe = pipeline("image-text-to-text", model="Qwen/Qwen2.5-VL-3B-Instruct") | |
pipe(messages) | |
def chat(input_text, history=[]): | |
history.append(input_text) | |
prompt = "\n".join(history) + "\nAI:" # Simple conversational format | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
output = model.generate(**inputs, max_length=512, pad_token_id=tokenizer.eos_token_id) | |
response = tokenizer.decode(output[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True) | |
history.append(f"AI: {response}") | |
return response, history | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
print("starting Praveen's smarter chatbot...") | |
""" | |
The transformer model used here is Microsoft-trained Phi-3.5-mini-instruct | |
""" | |
#model_name = "microsoft/Phi-3.5-mini-instruct" | |
chat_model = pipeline("text-generation", model=model_name) | |
print("defining the chat_response function") | |
def chat_response( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens | |
): | |
print("Inside chat_response progressing...") | |
messages = [{"role": "system", "content": system_message}] | |
print ("System Messages", messages) | |
messages.append({"role": "user", "content": message}) | |
print ("Messages after adding user messages", messages) | |
response = chat_model(messages) #Passing system and user messages to the transformer model Phi-3.5-mini-instruct to get smarter responses | |
print("Response received from model",response) | |
return response[-1]['generated_text'][-1]['content'] | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
chat, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |