TestLlama2 / app.py
bmas10's picture
Update app.py
edbd7f9 verified
raw
history blame
2.46 kB
# Week - 3 Assignment - Integrate Traditional Chatbot with AI Service Project (Transformers) Praveen Kumar Parimi
#importing the required libraries including transformers
import base64
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
import torch
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("image-text-to-text", model="Qwen/Qwen2.5-VL-3B-Instruct")
pipe(messages)
def chat(input_text, history=[]):
history.append(input_text)
prompt = "\n".join(history) + "\nAI:" # Simple conversational format
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_length=512, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
history.append(f"AI: {response}")
return response, history
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
print("starting Praveen's smarter chatbot...")
"""
The transformer model used here is Microsoft-trained Phi-3.5-mini-instruct
"""
#model_name = "microsoft/Phi-3.5-mini-instruct"
chat_model = pipeline("text-generation", model=model_name)
print("defining the chat_response function")
def chat_response(
message,
history: list[tuple[str, str]],
system_message,
max_tokens
):
print("Inside chat_response progressing...")
messages = [{"role": "system", "content": system_message}]
print ("System Messages", messages)
messages.append({"role": "user", "content": message})
print ("Messages after adding user messages", messages)
response = chat_model(messages) #Passing system and user messages to the transformer model Phi-3.5-mini-instruct to get smarter responses
print("Response received from model",response)
return response[-1]['generated_text'][-1]['content']
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
chat,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
],
)
if __name__ == "__main__":
demo.launch()