Update rgb2x/gradio_demo_rgb2x.py
Browse files- rgb2x/gradio_demo_rgb2x.py +23 -29
rgb2x/gradio_demo_rgb2x.py
CHANGED
@@ -38,21 +38,16 @@ def generate(
|
|
38 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
39 |
photo_name = photo.name
|
40 |
if photo_name.endswith(".exr"):
|
41 |
-
|
42 |
-
|
43 |
-
photo_name.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Check if the width and height are multiples of 8. If not, crop it using torchvision.transforms.CenterCrop
|
50 |
-
old_height = photo.shape[1]
|
51 |
-
old_width = photo.shape[2]
|
52 |
-
new_height = old_height
|
53 |
-
new_width = old_width
|
54 |
radio = old_height / old_width
|
55 |
max_side = 1000
|
|
|
56 |
if old_height > old_width:
|
57 |
new_height = max_side
|
58 |
new_width = int(new_height / radio)
|
@@ -60,11 +55,10 @@ def generate(
|
|
60 |
new_width = max_side
|
61 |
new_height = int(new_width * radio)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
new_height = new_height // 8 * 8
|
66 |
|
67 |
-
|
68 |
|
69 |
required_aovs = ["albedo", "normal", "roughness", "metallic", "irradiance"]
|
70 |
prompts = {
|
@@ -75,36 +69,37 @@ def generate(
|
|
75 |
"irradiance": "Irradiance (diffuse lighting)",
|
76 |
}
|
77 |
|
78 |
-
return_list = []
|
|
|
79 |
for i in range(num_samples):
|
80 |
for aov_name in required_aovs:
|
81 |
prompt = prompts[aov_name]
|
82 |
-
|
83 |
prompt=prompt,
|
84 |
-
photo=
|
85 |
num_inference_steps=inference_step,
|
86 |
height=new_height,
|
87 |
width=new_width,
|
88 |
generator=generator,
|
89 |
required_aovs=[aov_name],
|
90 |
-
).images[0][0] # type: ignore
|
91 |
-
|
92 |
-
generated_image = torchvision.transforms.Resize((old_height, old_width))(
|
93 |
-
generated_image
|
94 |
)
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
return_list.append((photo_name, "Input Image"))
|
100 |
return return_list
|
101 |
|
102 |
|
103 |
with gr.Blocks() as demo:
|
104 |
with gr.Row():
|
105 |
gr.Markdown("## Model RGB -> X (Realistic image -> Intrinsic channels)")
|
|
|
106 |
with gr.Row():
|
107 |
-
# Input side
|
108 |
with gr.Column():
|
109 |
gr.Markdown("### Given Image")
|
110 |
photo = gr.File(label="Photo", file_types=[".exr", ".png", ".jpg"])
|
@@ -134,7 +129,6 @@ with gr.Blocks() as demo:
|
|
134 |
value=1,
|
135 |
)
|
136 |
|
137 |
-
# Output side
|
138 |
with gr.Column():
|
139 |
gr.Markdown("### Output Gallery")
|
140 |
result_gallery = gr.Gallery(
|
|
|
38 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
39 |
photo_name = photo.name
|
40 |
if photo_name.endswith(".exr"):
|
41 |
+
photo_tensor = load_exr_image(photo_name, tonemaping=True, clamp=True).to("cuda")
|
42 |
+
else:
|
43 |
+
photo_tensor = load_ldr_image(photo_name, from_srgb=True).to("cuda")
|
44 |
+
|
45 |
+
# Resize to multiple of 8
|
46 |
+
old_height = photo_tensor.shape[1]
|
47 |
+
old_width = photo_tensor.shape[2]
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
radio = old_height / old_width
|
49 |
max_side = 1000
|
50 |
+
|
51 |
if old_height > old_width:
|
52 |
new_height = max_side
|
53 |
new_width = int(new_height / radio)
|
|
|
55 |
new_width = max_side
|
56 |
new_height = int(new_width * radio)
|
57 |
|
58 |
+
new_width = new_width // 8 * 8
|
59 |
+
new_height = new_height // 8 * 8
|
|
|
60 |
|
61 |
+
photo_resized = torchvision.transforms.Resize((new_height, new_width))(photo_tensor)
|
62 |
|
63 |
required_aovs = ["albedo", "normal", "roughness", "metallic", "irradiance"]
|
64 |
prompts = {
|
|
|
69 |
"irradiance": "Irradiance (diffuse lighting)",
|
70 |
}
|
71 |
|
72 |
+
return_list: list[Image.Image] = []
|
73 |
+
|
74 |
for i in range(num_samples):
|
75 |
for aov_name in required_aovs:
|
76 |
prompt = prompts[aov_name]
|
77 |
+
result = pipe(
|
78 |
prompt=prompt,
|
79 |
+
photo=photo_resized,
|
80 |
num_inference_steps=inference_step,
|
81 |
height=new_height,
|
82 |
width=new_width,
|
83 |
generator=generator,
|
84 |
required_aovs=[aov_name],
|
|
|
|
|
|
|
|
|
85 |
)
|
86 |
+
image_tensor = result.images[0][0] # type: ignore
|
87 |
+
image_tensor = torchvision.transforms.Resize((old_height, old_width))(image_tensor)
|
88 |
+
image_pil = torchvision.transforms.ToPILImage()(image_tensor.cpu())
|
89 |
+
return_list.append(image_pil)
|
90 |
|
91 |
+
# Also return the input image at the end
|
92 |
+
input_image_pil = torchvision.transforms.ToPILImage()(photo_tensor.cpu())
|
93 |
+
return_list.append(input_image_pil)
|
94 |
|
|
|
95 |
return return_list
|
96 |
|
97 |
|
98 |
with gr.Blocks() as demo:
|
99 |
with gr.Row():
|
100 |
gr.Markdown("## Model RGB -> X (Realistic image -> Intrinsic channels)")
|
101 |
+
|
102 |
with gr.Row():
|
|
|
103 |
with gr.Column():
|
104 |
gr.Markdown("### Given Image")
|
105 |
photo = gr.File(label="Photo", file_types=[".exr", ".png", ".jpg"])
|
|
|
129 |
value=1,
|
130 |
)
|
131 |
|
|
|
132 |
with gr.Column():
|
133 |
gr.Markdown("### Output Gallery")
|
134 |
result_gallery = gr.Gallery(
|