Spaces:
Runtime error
Runtime error
Update rgb2x/gradio_demo_rgb2x.py
Browse files- rgb2x/gradio_demo_rgb2x.py +30 -24
rgb2x/gradio_demo_rgb2x.py
CHANGED
|
@@ -38,16 +38,21 @@ def generate(
|
|
| 38 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 39 |
photo_name = photo.name
|
| 40 |
if photo_name.endswith(".exr"):
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
radio = old_height / old_width
|
| 49 |
max_side = 1000
|
| 50 |
-
|
| 51 |
if old_height > old_width:
|
| 52 |
new_height = max_side
|
| 53 |
new_width = int(new_height / radio)
|
|
@@ -55,10 +60,11 @@ def generate(
|
|
| 55 |
new_width = max_side
|
| 56 |
new_height = int(new_width * radio)
|
| 57 |
|
| 58 |
-
new_width
|
| 59 |
-
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
|
| 63 |
required_aovs = ["albedo", "normal", "roughness", "metallic", "irradiance"]
|
| 64 |
prompts = {
|
|
@@ -69,37 +75,36 @@ def generate(
|
|
| 69 |
"irradiance": "Irradiance (diffuse lighting)",
|
| 70 |
}
|
| 71 |
|
| 72 |
-
return_list
|
| 73 |
-
|
| 74 |
for i in range(num_samples):
|
| 75 |
for aov_name in required_aovs:
|
| 76 |
prompt = prompts[aov_name]
|
| 77 |
-
|
| 78 |
prompt=prompt,
|
| 79 |
-
photo=
|
| 80 |
num_inference_steps=inference_step,
|
| 81 |
height=new_height,
|
| 82 |
width=new_width,
|
| 83 |
generator=generator,
|
| 84 |
required_aovs=[aov_name],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
-
image_tensor = result.images[0][0] # type: ignore
|
| 87 |
-
image_tensor = torchvision.transforms.Resize((old_height, old_width))(image_tensor)
|
| 88 |
-
image_pil = torchvision.transforms.ToPILImage()(image_tensor.cpu())
|
| 89 |
-
return_list.append(image_pil)
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
return_list.append(input_image_pil)
|
| 94 |
|
|
|
|
| 95 |
return return_list
|
| 96 |
|
| 97 |
|
| 98 |
with gr.Blocks() as demo:
|
| 99 |
with gr.Row():
|
| 100 |
gr.Markdown("## Model RGB -> X (Realistic image -> Intrinsic channels)")
|
| 101 |
-
|
| 102 |
with gr.Row():
|
|
|
|
| 103 |
with gr.Column():
|
| 104 |
gr.Markdown("### Given Image")
|
| 105 |
photo = gr.File(label="Photo", file_types=[".exr", ".png", ".jpg"])
|
|
@@ -129,6 +134,7 @@ with gr.Blocks() as demo:
|
|
| 129 |
value=1,
|
| 130 |
)
|
| 131 |
|
|
|
|
| 132 |
with gr.Column():
|
| 133 |
gr.Markdown("### Output Gallery")
|
| 134 |
result_gallery = gr.Gallery(
|
|
@@ -162,4 +168,4 @@ with gr.Blocks() as demo:
|
|
| 162 |
|
| 163 |
|
| 164 |
if __name__ == "__main__":
|
| 165 |
-
demo.launch(debug=False, share=False, show_api=False)
|
|
|
|
| 38 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 39 |
photo_name = photo.name
|
| 40 |
if photo_name.endswith(".exr"):
|
| 41 |
+
photo = load_exr_image(photo_name, tonemaping=True, clamp=True).to("cuda")
|
| 42 |
+
elif (
|
| 43 |
+
photo_name.endswith(".png")
|
| 44 |
+
or photo_name.endswith(".jpg")
|
| 45 |
+
or photo_name.endswith(".jpeg")
|
| 46 |
+
):
|
| 47 |
+
photo = load_ldr_image(photo_name, from_srgb=True).to("cuda")
|
| 48 |
+
|
| 49 |
+
# Check if the width and height are multiples of 8. If not, crop it using torchvision.transforms.CenterCrop
|
| 50 |
+
old_height = photo.shape[1]
|
| 51 |
+
old_width = photo.shape[2]
|
| 52 |
+
new_height = old_height
|
| 53 |
+
new_width = old_width
|
| 54 |
radio = old_height / old_width
|
| 55 |
max_side = 1000
|
|
|
|
| 56 |
if old_height > old_width:
|
| 57 |
new_height = max_side
|
| 58 |
new_width = int(new_height / radio)
|
|
|
|
| 60 |
new_width = max_side
|
| 61 |
new_height = int(new_width * radio)
|
| 62 |
|
| 63 |
+
if new_width % 8 != 0 or new_height % 8 != 0:
|
| 64 |
+
new_width = new_width // 8 * 8
|
| 65 |
+
new_height = new_height // 8 * 8
|
| 66 |
|
| 67 |
+
photo = torchvision.transforms.Resize((new_height, new_width))(photo)
|
| 68 |
|
| 69 |
required_aovs = ["albedo", "normal", "roughness", "metallic", "irradiance"]
|
| 70 |
prompts = {
|
|
|
|
| 75 |
"irradiance": "Irradiance (diffuse lighting)",
|
| 76 |
}
|
| 77 |
|
| 78 |
+
return_list = []
|
|
|
|
| 79 |
for i in range(num_samples):
|
| 80 |
for aov_name in required_aovs:
|
| 81 |
prompt = prompts[aov_name]
|
| 82 |
+
generated_image = pipe(
|
| 83 |
prompt=prompt,
|
| 84 |
+
photo=photo,
|
| 85 |
num_inference_steps=inference_step,
|
| 86 |
height=new_height,
|
| 87 |
width=new_width,
|
| 88 |
generator=generator,
|
| 89 |
required_aovs=[aov_name],
|
| 90 |
+
).images[0][0] # type: ignore
|
| 91 |
+
|
| 92 |
+
generated_image = torchvision.transforms.Resize((old_height, old_width))(
|
| 93 |
+
generated_image
|
| 94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
generated_image = (generated_image, f"Generated {aov_name} {i}")
|
| 97 |
+
return_list.append(generated_image)
|
|
|
|
| 98 |
|
| 99 |
+
return_list.append((photo_name, "Input Image"))
|
| 100 |
return return_list
|
| 101 |
|
| 102 |
|
| 103 |
with gr.Blocks() as demo:
|
| 104 |
with gr.Row():
|
| 105 |
gr.Markdown("## Model RGB -> X (Realistic image -> Intrinsic channels)")
|
|
|
|
| 106 |
with gr.Row():
|
| 107 |
+
# Input side
|
| 108 |
with gr.Column():
|
| 109 |
gr.Markdown("### Given Image")
|
| 110 |
photo = gr.File(label="Photo", file_types=[".exr", ".png", ".jpg"])
|
|
|
|
| 134 |
value=1,
|
| 135 |
)
|
| 136 |
|
| 137 |
+
# Output side
|
| 138 |
with gr.Column():
|
| 139 |
gr.Markdown("### Output Gallery")
|
| 140 |
result_gallery = gr.Gallery(
|
|
|
|
| 168 |
|
| 169 |
|
| 170 |
if __name__ == "__main__":
|
| 171 |
+
demo.launch(debug=False, share=False, show_api=False)
|