File size: 6,531 Bytes
a9af355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import spaces
import os
from typing import cast
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import DDIMScheduler
from load_image import load_exr_image, load_ldr_image
from pipeline_x2rgb import StableDiffusionAOVDropoutPipeline

os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"

current_directory = os.path.dirname(os.path.abspath(__file__))

_pipe = StableDiffusionAOVDropoutPipeline.from_pretrained(
    "zheng95z/x-to-rgb",
    torch_dtype=torch.float16,
    cache_dir=os.path.join(current_directory, "model_cache"),
).to("cuda")
pipe = cast(StableDiffusionAOVDropoutPipeline, _pipe)
pipe.scheduler = DDIMScheduler.from_config(
    pipe.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
pipe.set_progress_bar_config(disable=True)
pipe.to("cuda")
pipe = cast(StableDiffusionAOVDropoutPipeline, pipe)


@spaces.GPU
def generate(
    albedo,
    normal,
    roughness,
    metallic,
    irradiance,
    prompt: str,
    seed: int,
    inference_step: int,
    num_samples: int,
    guidance_scale: float,
    image_guidance_scale: float,
) -> list[Image.Image]:
    generator = torch.Generator(device="cuda").manual_seed(seed)

    # Load and process each intrinsic channel image
    def process_image(file, **kwargs):
        if file is None:
            return None
        if file.name.endswith(".exr"):
            return load_exr_image(file.name, **kwargs).to("cuda")
        elif file.name.endswith((".png", ".jpg", ".jpeg")):
            return load_ldr_image(file.name, **kwargs).to("cuda")
        return None

    albedo_image = process_image(albedo, clamp=True)
    normal_image = process_image(normal, normalize=True)
    roughness_image = process_image(roughness, clamp=True)
    metallic_image = process_image(metallic, clamp=True)
    irradiance_image = process_image(irradiance, tonemaping=True, clamp=True)

    # Set default height and width based on the first available image
    height, width = 768, 768
    for img in [
        albedo_image,
        normal_image,
        roughness_image,
        metallic_image,
        irradiance_image,
    ]:
        if img is not None:
            height, width = img.shape[1], img.shape[2]
            break

    required_aovs = ["albedo", "normal", "roughness", "metallic", "irradiance"]
    return_list = []

    for i in range(num_samples):
        generated_image = pipe(
            prompt=prompt,
            albedo=albedo_image,
            normal=normal_image,
            roughness=roughness_image,
            metallic=metallic_image,
            irradiance=irradiance_image,
            num_inference_steps=inference_step,
            height=height,
            width=width,
            generator=generator,
            required_aovs=required_aovs,
            guidance_scale=guidance_scale,
            image_guidance_scale=image_guidance_scale,
            guidance_rescale=0.7,
            output_type="np",
        ).images[0]  # type: ignore

        return_list.append((generated_image, f"Generated Image {i}"))

    # Append additional images to the output gallery
    def post_process_image(img, **kwargs):
        if img is not None:
            return (img.cpu().numpy().transpose(1, 2, 0), kwargs.get("label", "Image"))
        return np.zeros((height, width, 3))

    return_list.extend(
        [
            post_process_image(albedo_image, label="Albedo"),
            post_process_image(normal_image, label="Normal"),
            post_process_image(roughness_image, label="Roughness"),
            post_process_image(metallic_image, label="Metallic"),
            post_process_image(irradiance_image, label="Irradiance"),
        ]
    )

    return return_list


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("## Model X -> RGB (Intrinsic channels -> realistic image)")
    with gr.Row():
        # Input side
        with gr.Column():
            gr.Markdown("### Given intrinsic channels")
            albedo = gr.File(label="Albedo", file_types=[".exr", ".png", ".jpg"])
            normal = gr.File(label="Normal", file_types=[".exr", ".png", ".jpg"])
            roughness = gr.File(label="Roughness", file_types=[".exr", ".png", ".jpg"])
            metallic = gr.File(label="Metallic", file_types=[".exr", ".png", ".jpg"])
            irradiance = gr.File(
                label="Irradiance", file_types=[".exr", ".png", ".jpg"]
            )

            gr.Markdown("### Parameters")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(value="Run")
            with gr.Accordion("Advanced options", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=-1,
                    maximum=2147483647,
                    step=1,
                    randomize=True,
                )
                inference_step = gr.Slider(
                    label="Inference Step",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                )
                num_samples = gr.Slider(
                    label="Samples",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=1,
                )
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                image_guidance_scale = gr.Slider(
                    label="Image Guidance Scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=1.5,
                )

        # Output side
        with gr.Column():
            gr.Markdown("### Output Gallery")
            result_gallery = gr.Gallery(
                label="Output",
                show_label=False,
                elem_id="gallery",
                columns=2,
            )

    run_button.click(
        fn=generate,
        inputs=[
            albedo,
            normal,
            roughness,
            metallic,
            irradiance,
            prompt,
            seed,
            inference_step,
            num_samples,
            guidance_scale,
            image_guidance_scale,
        ],
        outputs=result_gallery,
        queue=True,
    )


if __name__ == "__main__":
    demo.launch(debug=False, share=False, show_api=False)