import gradio as gr import numpy as np import spaces import torch import spaces import random from diffusers import FluxFillPipeline, FluxTransformer2DModel from PIL import Image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") transformer = FluxTransformer2DModel.from_pretrained( "xiaozaa/flux1-fill-dev-diffusers", ## The official Flux-Fill weights torch_dtype=torch.bfloat16 ) print("Start loading LoRA weights") state_dict, network_alphas = FluxFillPipeline.lora_state_dict( pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture", weight_name="pytorch_lora_weights2.safetensors", return_alphas=True ) is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") pipe = FluxFillPipeline.from_pretrained( "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16 ).to(device) FluxFillPipeline.load_lora_into_transformer( state_dict=state_dict, network_alphas=network_alphas, transformer=pipe.transformer, ) # pipe.load_lora_weights("blanchon/FluxFillFurniture", weight_name="lora_fill.safetensors") # pipe.fuse_lora(lora_scale=1.0) pipe.to("cuda") def calculate_optimal_dimensions(image: Image.Image): # Extract the original dimensions original_width, original_height = image.size # Set constants for enforcing a roughly 2:1 aspect ratio MIN_ASPECT_RATIO = 1.8 MAX_ASPECT_RATIO = 2.2 FIXED_DIMENSION = 1024 # Calculate the aspect ratio of the original image original_aspect_ratio = original_width / original_height # Determine which dimension to fix if original_aspect_ratio > 1: # Wider than tall width = FIXED_DIMENSION height = round(FIXED_DIMENSION / original_aspect_ratio) else: # Taller than wide height = FIXED_DIMENSION width = round(FIXED_DIMENSION * original_aspect_ratio) # Ensure dimensions are multiples of 8 width = (width // 8) * 8 height = (height // 8) * 8 # Enforce aspect ratio limits calculated_aspect_ratio = width / height if calculated_aspect_ratio > MAX_ASPECT_RATIO: width = (height * MAX_ASPECT_RATIO // 8) * 8 elif calculated_aspect_ratio < MIN_ASPECT_RATIO: height = (width / MIN_ASPECT_RATIO // 8) * 8 # Ensure width and height remain above the minimum dimensions width = max(width, 576) if width == FIXED_DIMENSION else width height = max(height, 576) if height == FIXED_DIMENSION else height return width, height @spaces.GPU def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): image = edit_images["background"] width, height = calculate_optimal_dimensions(image) mask = edit_images["layers"][0] if randomize_seed: seed = random.randint(0, MAX_SEED) image = pipe( prompt=prompt, image=image, mask_image=mask, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=torch.Generator("cpu").manual_seed(seed) ).images[0] return image, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 1000px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 Fill [dev] 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): with gr.Column(): edit_image = gr.ImageEditor( label='Upload and draw mask for inpainting', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), height=600 ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=50, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()