Spaces:
Paused
Paused
num_images_per_prompt
Browse files
app.py
CHANGED
@@ -12,8 +12,8 @@ from PIL import Image, ImageFilter, ImageOps
|
|
12 |
DEVICE = "cuda"
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
-
|
16 |
-
FIXED_DIMENSION = 512 + (512 // 2)
|
17 |
FIXED_DIMENSION = (FIXED_DIMENSION // 16) * 16
|
18 |
|
19 |
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
|
@@ -127,20 +127,18 @@ def infer(
|
|
127 |
seed = secrets.randbelow(MAX_SEED)
|
128 |
|
129 |
prompt = prompt + ".\n" + SYSTEM_PROMPT if prompt else SYSTEM_PROMPT
|
130 |
-
batch_size = 4
|
131 |
results_images = pipe(
|
132 |
-
prompt=
|
133 |
-
image=
|
134 |
mask_image=mask,
|
135 |
height=FIXED_DIMENSION,
|
136 |
width=FIXED_DIMENSION * 2,
|
137 |
-
guidance_scale=guidance_scale,
|
138 |
num_inference_steps=num_inference_steps,
|
|
|
|
|
139 |
generator=torch.Generator("cpu").manual_seed(seed),
|
140 |
)["images"]
|
141 |
|
142 |
-
print(len(results_images))
|
143 |
-
|
144 |
cropped_images = [
|
145 |
image.crop((FIXED_DIMENSION, 0, FIXED_DIMENSION * 2, FIXED_DIMENSION))
|
146 |
for image in results_images
|
|
|
12 |
DEVICE = "cuda"
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
FIXED_DIMENSION = 900
|
16 |
+
# FIXED_DIMENSION = 512 + (512 // 2)
|
17 |
FIXED_DIMENSION = (FIXED_DIMENSION // 16) * 16
|
18 |
|
19 |
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
|
|
|
127 |
seed = secrets.randbelow(MAX_SEED)
|
128 |
|
129 |
prompt = prompt + ".\n" + SYSTEM_PROMPT if prompt else SYSTEM_PROMPT
|
|
|
130 |
results_images = pipe(
|
131 |
+
prompt=prompt,
|
132 |
+
image=image,
|
133 |
mask_image=mask,
|
134 |
height=FIXED_DIMENSION,
|
135 |
width=FIXED_DIMENSION * 2,
|
|
|
136 |
num_inference_steps=num_inference_steps,
|
137 |
+
guidance_scale=guidance_scale,
|
138 |
+
num_images_per_prompt=4,
|
139 |
generator=torch.Generator("cpu").manual_seed(seed),
|
140 |
)["images"]
|
141 |
|
|
|
|
|
142 |
cropped_images = [
|
143 |
image.crop((FIXED_DIMENSION, 0, FIXED_DIMENSION * 2, FIXED_DIMENSION))
|
144 |
for image in results_images
|