Spaces:
Paused
Paused
import secrets | |
from typing import cast | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import FluxFillPipeline | |
from gradio.components.image_editor import EditorValue | |
from PIL import Image, ImageFilter, ImageOps | |
DEVICE = "cuda" | |
MAX_SEED = np.iinfo(np.int32).max | |
# FIXED_DIMENSION = 900 | |
FIXED_DIMENSION = 512 + (512 // 2) | |
FIXED_DIMENSION = (FIXED_DIMENSION // 16) * 16 | |
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room. | |
[LEFT] standalone product shot image the furniture on a white background. | |
[RIGHT] integrated example within a room scene.""" | |
if not torch.cuda.is_available(): | |
def _dummy_pipe(image: list[Image.Image], *args, **kwargs): # noqa: ARG001 | |
return {"images": image} | |
pipe = _dummy_pipe | |
else: | |
state_dict, network_alphas = FluxFillPipeline.lora_state_dict( | |
pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture", | |
weight_name="pytorch_lora_weights3.safetensors", | |
return_alphas=True, | |
) | |
if not all(("lora" in key or "dora_scale" in key) for key in state_dict): | |
msg = "Invalid LoRA checkpoint." | |
raise ValueError(msg) | |
pipe = FluxFillPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16 | |
).to(DEVICE) | |
FluxFillPipeline.load_lora_into_transformer( | |
state_dict=state_dict, | |
network_alphas=network_alphas, | |
transformer=pipe.transformer, | |
) | |
pipe.to(DEVICE) | |
def infer( | |
furniture_image: Image.Image, | |
room_image: EditorValue, | |
prompt: str = "", | |
seed: int = 42, | |
randomize_seed: bool = False, | |
guidance_scale: float = 3.5, | |
num_inference_steps: int = 28, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 | |
): | |
_room_image = room_image["background"] | |
if _room_image is None: | |
msg = "Room image is required" | |
raise ValueError(msg) | |
_room_image = cast(Image.Image, _room_image) | |
_room_image = ImageOps.fit( | |
_room_image, | |
(FIXED_DIMENSION, FIXED_DIMENSION), | |
method=Image.Resampling.LANCZOS, | |
centering=(0.5, 0.5), | |
) | |
_room_mask = room_image["layers"][0] | |
if _room_mask is None: | |
msg = "Room mask is required" | |
raise ValueError(msg) | |
_room_mask = cast(Image.Image, _room_mask) | |
_room_mask = ImageOps.fit( | |
_room_mask, | |
(FIXED_DIMENSION, FIXED_DIMENSION), | |
method=Image.Resampling.LANCZOS, | |
centering=(0.5, 0.5), | |
) | |
furniture_image = ImageOps.fit( | |
furniture_image, | |
(FIXED_DIMENSION, FIXED_DIMENSION), | |
method=Image.Resampling.LANCZOS, | |
centering=(0.5, 0.5), | |
) | |
_furniture_image = Image.new( | |
"RGB", | |
(FIXED_DIMENSION, FIXED_DIMENSION), | |
(255, 255, 255), | |
) | |
_furniture_image.paste(furniture_image, (0, 0)) | |
_furniture_mask = Image.new( | |
"RGB", (FIXED_DIMENSION, FIXED_DIMENSION), (255, 255, 255) | |
) | |
image = Image.new( | |
"RGB", | |
(FIXED_DIMENSION * 2, FIXED_DIMENSION), | |
(255, 255, 255), | |
) | |
# Paste on the center of the image | |
image.paste(_furniture_image, (0, 0)) | |
image.paste(_room_image, (FIXED_DIMENSION, 0)) | |
mask = Image.new( | |
"RGB", | |
(FIXED_DIMENSION * 2, FIXED_DIMENSION), | |
(255, 255, 255), | |
) | |
mask.paste(_furniture_mask, (0, 0)) | |
mask.paste(_room_mask, (FIXED_DIMENSION, 0), _room_mask) | |
# Invert the mask | |
mask = ImageOps.invert(mask) | |
# Blur the mask | |
mask = mask.filter(ImageFilter.GaussianBlur(radius=10)) | |
# Convert to 3 channel | |
mask = mask.convert("RGB") | |
if randomize_seed: | |
seed = secrets.randbelow(MAX_SEED) | |
prompt = prompt + ".\n" + SYSTEM_PROMPT if prompt else SYSTEM_PROMPT | |
batch_size = 4 | |
results_images = pipe( | |
prompt=[prompt] * batch_size, | |
image=[image] * batch_size, | |
mask_image=mask, | |
height=FIXED_DIMENSION, | |
width=FIXED_DIMENSION * 2, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator("cpu").manual_seed(seed), | |
)["images"] | |
print(len(results_images)) | |
cropped_images = [ | |
image.crop((FIXED_DIMENSION, 0, FIXED_DIMENSION * 2, FIXED_DIMENSION)) | |
for image in results_images | |
] | |
return cropped_images, seed | |
intro_markdown = """ | |
# AnyFurnish | |
AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev. | |
""" | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1000px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(intro_markdown) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Column(): | |
furniture_image = gr.Image( | |
label="Furniture Image", | |
type="pil", | |
sources=["upload"], | |
image_mode="RGB", | |
height=300, | |
) | |
room_image = gr.ImageEditor( | |
label="Room Image - Draw mask for inpainting", | |
type="pil", | |
sources=["upload"], | |
image_mode="RGBA", | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), | |
height=300, | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter a custom furniture description (optional)", | |
container=False, | |
) | |
run_button = gr.Button("Run") | |
results = gr.Gallery( | |
label="Results", | |
format="png", | |
show_label=False, | |
columns=2, | |
height=600, | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=30, | |
step=0.5, | |
value=50, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
furniture_image, | |
room_image, | |
prompt, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[results, seed], | |
) | |
demo.launch() | |